最小割

套路最小割。。。

盗一波图 来自GXZ神犇

对于这样的图,我们要么割ai,bj,要么割bi,aj,要么割ai,ci+cj,aj,要么割bi,ci+cj,bj,然后这样建图跑最小割就行了

但这不是重点,这道题我t了大概一个月,不知道为什么,怎么和别人比对代码好像没有什么差异,结果发现判断delta=0不能放在for循环里,否则会很慢。。。俞勇的红书不靠谱啊。。。怪不得我的网络流那么慢。。。

#include<bits/stdc++.h>
using namespace std;
const int N = , inf = ;
const int dx[] = {-, , , }, dy[] = {, , -, };
int head[N], d[N], q[N], iter[N];
struct edge {
int nxt, to, f;
} e[N * ];
int n, cnt = , source, sink, ans, m;
#define id(i, j) (i - 1) * m + j
int read()
{
int x = , f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = x * + c - ''; c = getchar(); }
return x * f;
}
void link(int u, int v, int f)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].to = v;
e[cnt].f = f;
}
void insert(int u, int v, int f)
{
link(u, v, f);
link(v, u, );
}
bool bfs()
{
queue<int> q;
q.push(source);
memset(d, , sizeof(d));
d[source] = ;
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = head[u]; i; i = e[i].nxt) if(e[i].f && !d[e[i].to])
{
d[e[i].to] = d[u] + ;
q.push(e[i].to);
if(e[i].to == sink) return true;
}
}
return false;
}
int dfs(int u, int delta)
{
if(u == sink || delta == ) return delta;
int ret = ;
for(int &i = iter[u]; i; i = e[i].nxt) if(e[i].f && d[e[i].to] == d[u] + )
{
int x = dfs(e[i].to, min(e[i].f, delta));
if(x == ) d[e[i].to] = ;
e[i].f -= x;
e[i ^ ].f += x;
delta -= x;
ret += x;
if(delta == ) return ret;
}
return ret;
}
int dinic()
{
int ret = ;
while(bfs())
{
for(int i = source; i <= sink; ++i) iter[i] = head[i];
ret += dfs(source, inf);
}
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
sink = n * m + ;
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j);
scanf("%d", &x);
ans += x;
if((i + j) & ) insert(source, a, x);
else insert(a, sink, x);
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j);
scanf("%d", &x);
ans += x;
if((i + j) & ) insert(a, sink, x);
else insert(source, a, x);
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j), b;
scanf("%d", &x);
for(int k = ; k < ; ++k)
{
int xx = i + dx[k], yy = j + dy[k];
b = id(xx, yy);
if(xx > && xx <= n && yy > && yy <= m)
{
ans += x;
insert(a, b, x);
insert(b, a, x);
}
}
}
printf("%d\n", ans - dinic());
return ;
}

bzoj2132的更多相关文章

  1. 一类最小割bzoj2127,bzoj2132 bzoj3438

    思考一下我们接触的最小割问题 最小割的基本问题(可能会和图论的知识相结合,比如bzoj1266,bzoj1797) 最大权闭合图(bzoj1497) 最大点权覆盖集,最大点权独立集(bzoj1324) ...

  2. 【BZOJ2132】圈地计划(最小割)

    [BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...

  3. 【BZOJ2132】圈地计划 最小割

    [BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...

  4. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  5. bzoj2132: 圈地计划

    要分成两坨对吧.. 所以显然最小割 但是不兹辞啊.. 最小割是最小的啊 求最大费用怎么玩啊 那咱们就把所有费用都加起来,减掉一个最小的呗 但是两个属于不同集合的点贡献的价值是负的啊 网络流怎么跑负的啊 ...

  6. bzoj2132: 圈地计划(最小割)

    传送门 看来以后见到矩形就要黑白染色冷静一下了…… 首先,如果它的要求时候相邻的选择相同,那么就是和这一题一样了->这里 然后考虑不同的要怎么做 那就把矩形黑白染色一下吧 然后令其中一种颜色的A ...

  7. 【bzoj2132】圈地计划 网络流最小割

    题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...

  8. BZOJ2132 圈地计划 【最小割】

    题目 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解, 这块土地是一块矩形的区域,可以纵横划分 ...

  9. bzoj2132【圈地计划】

    题面 思路: 一开始以为和为了博多一样,两边连一样的,后来发现中间连负边的话根本不会割,即割断两块收益为负,所以WA的起飞…… 正解是先黑白染色,每个点和它周围的点连边方式不同.对于黑点A,S--&g ...

随机推荐

  1. ruby on rails安装(win7x64)

    Ruby下载地址http://rubyinstaller.org/downloads/ (以安装2.1.7为例,2.2.3未能安装成功) 安装完之后测试是否安装成功

  2. web环境搭建

    [服务器] 硬件设备---计算机 软件 [作用] 作为web服务器运行.可以管理web项目 [目录说明] bin :存放各类可以执行文件,如:startup.bat conf:存放各类配置文件,常用配 ...

  3. Qt 安装与配置记录

    一 安装的时候得选一个Qt安装啊!!不要忘了展开这一项,而只安装Qt creator 展开之后会发现有很多版本,为了方便,选自带编译器mingw,就不需要麻烦的配置了 二 打开Qt creator 后 ...

  4. jsp获取绝对路径----${pageContext.request.contextPath}

    JSP取得绝对路径 在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下: 一.使用${pageCont ...

  5. 使用mysql-proxy 快速实现mysql 集群 读写分离

    目前较为常见的mysql读写分离分为两种: 1. 基于程序代码内部实现:在代码中对select操作分发到从库:其它操作由主库执行:这类方法也是目前生产环境应用最广泛,知名的如DISCUZ X2.优点是 ...

  6. <<编程之美>> -- 队列中取最大值操作的问题

    不得不说编程之美是一本好书,虽然很多题目在做acm中的过程中遇到过,不过还是有很多值得思考的地方 这是今天在编程之美上看到的一个问题,对于栈转化成队列的一个思考 平时都太过依赖c++内函数库中的栈和队 ...

  7. poj 1456

    #include<stdio.h> #include<string.h> #include<stdlib.h> #define N 10010 #define in ...

  8. linux 硬件中断调节

    什么是中断 中断interrupts是指硬件主动的来告诉CPU去做某些事情.比如网卡收到数据后可能主动的告诉CPU来处理自己接受到的数据,键盘有了按键输入后会主动告知CPU来读取输入. 硬件主动的打扰 ...

  9. [Spring] Properties for project configuration

    We might have some project specific configuration need to setup. The good approach to do this in Spr ...

  10. kvm虚拟化网络管理

    Linux Bridge 网桥管理 VM2 的虚拟网卡 vnet1 也连接到了 br0 上. 现在 VM1 和 VM2 之间可以通信,同时 VM1 和 VM2 也都可以与外网通信 # Vlan LAN ...