【题目分析】

同样是Burnside引理。但是有几种颜色是不能放在一起的。

所以DP就好了。

然后T掉

所以矩阵乘法就好了。

然后T掉

所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了。

A掉

【代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 11
#define ll long long
#define inf 0x3f3f3f3f
#define maxm 100005
const int md=9973; int T,n,m,k,ni,ispr[maxm],pr[maxm],top=0,sum; struct Matrix{
int x[maxn][maxn];
void init(){memset(x,0,sizeof x);}
void clear(){F(i,1,m)F(j,1,m)x[i][j]=1;}
void print()
{
F(i,1,m)
{
F(j,1,m) printf("%d ",x[i][j]);
printf("\n");
}
}
}A,B,C,D; Matrix operator * (const Matrix a,const Matrix b) {
Matrix c;
for (int i=1;i<maxn;++i)
for (int j=1;j<maxn;++j)
{
c.x[i][j]=0;
for (int k=1;k<maxn;++k)
c.x[i][j]+=a.x[i][k]*b.x[k][j];
c.x[i][j]%=md;
}
return c;
} void init()
{
F(i,2,maxm-1)
{
if (!ispr[i]) pr[++top]=i;
F(j,2,inf)
{
if (i*j>=maxm) break;
ispr[i*j]=1;
}
}
} int qpow(int a,int b)
{
int ret=1;a%=md;
while (b)
{
if (b&1) (ret*=a)%=md;
(a*=a)%=md;
b>>=1;
}
return ret;
} int phi(int n)
{
int ret=n;
for (int i=1;pr[i]*pr[i]<=n&&i<=top;++i)
if (n%pr[i]==0)
{
ret=ret-ret/pr[i];
while (n%pr[i]==0) n/=pr[i];
}
if (n>1) ret=ret-ret/n;
return ret%md;
} int tak(int b)
{
int ret=0;
D.init();F(i,1,m)D.x[i][i]=1;
C=B;
while (b)
{
if (b&1) D=D*C;
C=C*C;
b>>=1;
}
F(i,1,m) ret+=D.x[i][i];
return ret;
} int main()
{
init();
scanf("%d",&T);
while (T--)
{
sum=0;
scanf("%d%d%d",&n,&m,&k);
ni=qpow(n,md-2);
B.init();
B.clear();
F(i,1,k)
{
int a,b;
scanf("%d%d",&a,&b);
B.x[a][b]=B.x[b][a]=0;
}
for (int i=1;(ll)i*(ll)i<=(ll)n;++i)
{
if (n%i==0)
{
sum=(sum+tak(i)*phi(n/i))%md;
if (i*i!=n)
sum=(sum+tak(n/i)*phi(i))%md;
}
}
printf("%d\n",(sum*ni)%md);
}
}

  

POJ 2888 Magic Bracelet ——Burnside引理的更多相关文章

  1. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  2. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  3. 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法

    [POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...

  4. 解题:POJ 2888 Magic Bracelet

    题面 这题虽然很老了但是挺好的 仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案. 思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的 ...

  5. POJ 2888 Magic Bracelet(burnside引理+矩阵)

    题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...

  6. [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]

    也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...

  7. poj 2888 Magic Bracelet <polya定理>

    题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...

  8. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  9. POJ 2888 Magic Bracelet [Polya 矩阵乘法]

    传送门 题意:竟然扯到哈利波特了.... 和上一题差不多,但颜色数很少,给出不能相邻的颜色对 可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了.... 感觉这样的环上有限制问题挺套路的...旋 ...

随机推荐

  1. 阿里云栖社区dubbo 资源整理

    1.apache dubbo pdf git 地址:https://github.com/dubbo/awesome-dubbo/tree/master/slides/meetup/201905%40 ...

  2. HDU 3377 Plan (插头DP,变形)

    题意:有一个n*m的矩阵,每个格子中有一个值(可能负值),要从左上角走到右下角,求路径的最大花费. 思路: 除了起点和终点外,其他的点可以走,也可以不走. (2)我用的是括号表示法,所以起始状态为') ...

  3. 爆零系列—补题A

    http://codeforces.com/contest/615/problem/A 读错题 结果发现是无脑题  直接标记统计 #include<cstdio> #include< ...

  4. SQL——SQL语言全部关键字详解

    http://blog.csdn.net/quinnnorris/article/details/71056445 数据库中我们做常用的就是SQL基本查询语言,甚至有些人认为数据库就是SQL,SQL就 ...

  5. Java中的线程--线程中的工具

    这主要想写一下Java中的jdk提供的一些线程中的工具, 一.semaphore信号灯 Semaphore可以维护当前访问自身的线程个数,并提供了同步机制,使用Semaphore可以控制同时访问资源的 ...

  6. 阿里短信接口使用(JAVA版)

    近期项目需要使用短信接口,对比下选择了阿里的短信接口 以下为开发笔记: maven pom.xml中引入: <dependency> <groupId>com.aliyun&l ...

  7. JavaScript reduce() 方法

    转载:http://www.runoob.com/jsref/jsref-reduce.html  JavaScript Array 对象 实例 计算数组元素相加后的总和: var numbers = ...

  8. 初中级PHP面试基础汇总

    这是我整理的一套面试题,老铁们看看就当复习了哦 相关PHP面试题 搞定PHP面试 - 函数知识点整理 php 面试题目整理 PHP面试整理 PHP面试 概述 感觉现在发面试题有些冷门,就跟昨天德国那场 ...

  9. leepcode(斐波那契数列与float("inf")无穷大)解析

    12.加一 给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一. 最高位数字存放在数组的首位, 数组中每个元素只存储一个数字. 你可以假设除了整数 0 之外,这个整数不会以零开头. 示例 ...

  10. linux中test的意义 又可以表示为[]

    测试标志 代表意义 文件名.文件类型 -e 该文件名是否存在 -f 该文件名是否存在且为file -d 该文件名是否存在且为目录 -b 该文件名是否存在且为一个block -c 该文件名是否存在且为一 ...