GT考试 BZOJ 1009
GT考试
【问题描述】
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0
【输入格式】
第一行输入N,M,K.接下来一行输入M位的数。
【输出格式】
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
【样例输入】
4 3 100
111
【样例输出】
81
【数据范围】
N<=10^9, M<=20, K<=1000
题解:
设f[i][j]表示至准考证号前i位,最多匹配到不吉利数的第j位的方案数
设a[i][j]表示在不吉利数的前i位后加上一个字符能匹配到不吉利数的第j位的字符的数量(枚举字符用KMP求出a矩阵)
那么转移方程:
答案:
发现转移方程可以用矩阵乘法优化
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
int n, m, t, mo, sum, s[], ne[];
struct ccc
{
int v[][];
ccc()
{
memset(v, , sizeof(v));
}
friend ccc operator * (ccc a, ccc b)
{
ccc ans;
for(int i = ; i < m; ++i)
for(int j = ; j < m; ++j)
for(int k = ; k < m; ++k)
ans.v[i][j] = (ans.v[i][j] + a.v[i][k] * b.v[k][j]) % mo;
return ans;
}
friend ccc operator ^ (ccc a, int b)
{
ccc ans;
for(int i = ; i <= m; ++i) ans.v[i][i] = ;
for(int i = b; i; i >>= , a = a * a)
if(i & )
ans = ans * a;
return ans;
}
};
ccc a, c;
int main()
{
scanf("%d%d%d", &n, &m, &mo);
getchar();
for(int i = ; i <= m; ++i) s[i] = getchar() - '';
t = ;
for(int i = ; i <= m; ++i)
{
while(t > && s[i] != s[t + ]) t = ne[t];
if(s[i] == s[t + ]) ++t;
ne[i] = t;
}
for(int i = ; i < m; ++i)
for(int j = ; j <= ; ++j)
{
t = i;
while(t > && s[t + ] != j) t = ne[t];
if(s[t + ] == j) ++t;
if(t != m) a.v[t][i] = (a.v[t][i] + ) % mo;
}
for(int i = ; i < m; ++i)
{
for(int j = ; j < m; ++j)
printf("%d ", a.v[i][j]);
printf("\n");
}
c = a ^ n;
for(int i = ; i < m; ++i) sum = (sum + c.v[i][]) % mo;
printf("%d", sum);
}
GT考试 BZOJ 1009的更多相关文章
- AC日记——[HNOI2008]GT考试 bzoj 1009
1009 思路: KMP上走DP(矩阵加速): DP[i][j]表示当前在第i位,同是匹配到不吉利串的第j位的方案数: 代码: #include <bits/stdc++.h> using ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 1009 GT考试
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 HNOI 2008 GT考试 递推+矩乘
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3679 Solved: 2254[Submit][Statu ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
- GT考试(bzoj 1009)
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
- BZOJ 1009 【HNOI2008】 GT考试
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
随机推荐
- spark 的RDD各种转换和动作
今天先把spark的各种基本转换和动作总结下,以后有时间把各种用法放上去. 1 RDD基本转换操作 map.flagMap.distinct coalesce.repartition coale ...
- synchronized关键字修饰非静态方法与静态方法的区别
这里我们先创建ObjLock类,并实现Runnable接口.并创建一个Demo类,具有被synchronized关键字修饰的非静态方法与静态方法. 非静态方法 public class ObjLock ...
- jquery插件serializeFormToObject
$.fn.serializeObject = function() { var o = {}; var a = this.serializeArray(); $.each(a, function() ...
- Java IO file文件的写入和读取及下载
一.FileWriter 和BufferedWriter 结合写入文件 FileWriter是字符流写入字符到文件.默认情况下,它会使用新的内容代替文件原有的所有内容,但是,当指定一个true值作为F ...
- ZOJ Monthly, January 2019-Little Sub and Pascal's Triangle
这个题的话,它每行奇数的个数等于该行行号,如果是0开始的,就该数的二进制中的1的个数,设为k,以它作为次数,2k就是了. #include <stdio.h> int main() { i ...
- 【dp】数字游戏&寒假祭
区间DP 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按 ...
- python中函数定义之实参、形参
一般在函数的定义中,会有一类变量---形参,它是函数完成其工作的一项信息.实参往往是调用函数时传递给函数的信息.我们在调用函数时,将要让函数使用的信息放在括号内.例如定义一个函数def greet_u ...
- angular的优化
https://github.com/atian25/blog/issues/5 更快地执行digest: 优化watch $scope.$watch(watchExpression, modelCh ...
- 杭电 5748 Bellovin
Description Peter has a sequence and he define a function on the sequence -- , where is the length ...
- ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze
262144K There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...