重点方法

  • 分组:groupby('列名') groupby(['列1'],['列2'........])

分组步骤:

  1. (spiltting)拆分 按照一些规则将数据分为不同的组

  2. (Applying)申请 对于每组数据分别执行一个函数

  3. (Combining) 组合 将结果组合到一个数据结构

  • 分组后默认统计的方法

    1.size() 大小 = count() max(),min(),std(),median()中位数,first(),last()

    函数名 使用
    count 分组中非NA(空值)的数量
    sum 非NA的和
    mean 非NA的平均值
    median 非NA的值的算术中位数
    std;var 无偏(分母为n-1)标准差和方差
    prod 非NA值的积
    first;last 第一个和最后一个非NA的值

以上统计函数:除了count()外,都会自动过滤非数字列!!!

排重:duplicated() 重复

1.检查重复数据:df.duplicated() 判断整行数据

2.检查重复指定列名:df.duplicated(['列1','列2....'])

3.删除重复数据:df.drop_duplicates()

4.删除时指定保留的数据:df.drop_duplicates(['列1','列2'...],keep='first/last')

  • keep:保存

  • first:第一个

  • last:最后一个

数据透视表

  • df.pivot_table(df,index=['列1','列2...'],values='名',aggfunc=np.mean/sum)

    • index : 排序的列

    • values: 统计列

    • aggfunc :执行的统计函数,不写默认统计平均值

分组替换:categories 分组/分类

  • 实现第二列!分组,并替换数据!

  • df['新列名']=df['B'].astype('category'): 转换为分类/分组类型

  • 分配列名:df['新列名'].cat.categories(['值1','值2....'])

  • 重新设置:df['新列名']=df['新列名'].cat.set_categories(['值1','值2.....'])

读写文件

  • HDF5:存储大数据,可方便和其他语言对接, 了解

    • to_hdf(文件)

    • read_hdf(文件)

  • csv:

    • to_csv(文件)

    • read_csv(文件)

  • 表格 excel:

    • to_excel(文件)

    • read_excel(文件)

Python数据分析 Pandas模块 基础数据结构与简介(二)的更多相关文章

  1. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  2. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

  3. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  4. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  5. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  6. Python数据分析-Day2-Pandas模块

    1.pandas简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标 ...

  7. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  8. 第一章:Python数据分析前的基础铺垫

    本节概要 - 数据类型 - 数据结构 - 数据的常用操作方法 数据类型 基础铺垫 定义 我们搞数据时,首先要告诉Python我们的数据类型是什么 数值型:直接写一个数字即可 逻辑型:True,Fals ...

  9. 小白学 Python 数据分析(17):Matplotlib(二)基础操作

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

随机推荐

  1. jQuery 第九章 工具方法

    $.type() $.isArray() $.isFunction() $.isWindow()... $.trim() $.proxy() $.noConflict() $.each() $.map ...

  2. Pursuit For Artifacts CodeForces - 652E

    https://vjudge.net/problem/CodeForces-652E 边双啊,就是点双那个tarjan里面,如果low[v]==dfn[v](等同于low[v]>dfn[u]), ...

  3. linux中用户组和用户

    linux中用户组和用户 1.介绍 在我们的linux系统,有很多用户组,也可以手动创建用户组,不同的用户组下面有很多的用户. 2.创建用户组及有关的命令 groupadd phpzu:创建一个php ...

  4. Design Patterns Uncovered: The Chain Of Responsibility Pattern

    Chain of Responsibility in the Real World The idea of the Chain Of Responsibility is that it avoids ...

  5. postman断言分析

    最近测试中用到postman,使用后就简单总结下常用的断言,下面带图的自己最常用的,其他的没怎么用. postman断言是JavaScript语言编写的,在postman客户端指定区域编写即可. 断言 ...

  6. 【转】数据库CRUD操作

    数据库CRUD操作 一.删除表   drop table 表名称 二.修改表 alter   table 表名称 add  列名 数据类型   (add表示添加一列) alter  table  表名 ...

  7. Spring-bean(一)

    配置形式:基于xml文件的方式:基于注解的方式 Bean的配置方式:通过全类名(反射),通过工厂方法(静态工厂方法&实例工厂方法),FactoryBean 依赖注入的方式:属性注入,构造器注入 ...

  8. 搭建SSM框架(聚合项目)

    parents 父工程 pom  base用户权限 jar   wms业务 jar app帮助管理 war1. parents的pom.xml文件 1.1 maven servlet3.1.0 1.2 ...

  9. xutils3批量上传文件

    前几天开发安卓要用到文件批量上传,就是上传图片,视频,文件之类的用到Xutil3框架,用 RequestParams params = new RequestParams(url); params.a ...

  10. Linux上用mvn安装node.js

    Linux上用mvn安装node.js 上一篇blog简略的讲了ubuntu系统的安装,接下来讲讲Ubuntu上的基于node.js的web开发环境的搭建. Node在快速构建网络服务有着极大的优势, ...