Description


When participating in programming contests, you sometimes face the following problem: You know

how to calcutale the output for the given input values, but your algorithm is way too slow to ever

pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that

would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half

an hour and produce a table of answers for all possible input values, encode this table into a program,

submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,

but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.

But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program

small enough to pass the judge. The situation looked hopeless, until he discovered the following property

regarding the answers: the answers where calculated from two integers, but whenever the two

input values had a common factor, the answer could be easily derived from the answer for which the

input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range

[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer

from it by applying some simple calculations involving Answer(x, y) and k.

For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value

combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),

Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived

from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from

Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,

so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the

number of function Jimmy has to pre-calculate.

Input


The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which

indicates the value of N. Input is terminated by a line which contains a zero. This line should not be

processed.

Output


For each line of input produce one line of output. This line contains an integer which indicates how

many values Jimmy has to pre-calculate for a certain value of N.

Sample Input

2
5
0

Sample Output

3
19

题解


问小于n,且两元素互素的二元组有多少个,答案为

\[(2\cdot\sum_{i=1}^{n}phi(i))-1$$(二元组可以倒置,(1,1)除外)

###参考代码
```C++
#include <queue>
#include <cmath>
#include <cstdio>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=50005;
int phi[N];
void phi_table(int n){
for(int i=2;i<=n;i++) phi[i]=0;
phi[1]=1;
for(int i=2;i<=n;i++) if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int ans[N];
int main(){
phi_table(50000);
for(int i=1;i<=50000;i++) ans[i]=ans[i-1]+phi[i];
while(true){
int n=read();
if(!n) break;
Out(2*ans[n]-1);
puts("");
}
return 0;
}
```\]

【UVA 10820】Send a Table(欧拉函数)的更多相关文章

  1. Uva 10820 Send a Table(欧拉函数)

    对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...

  2. UVa 10820 (打表、欧拉函数) Send a Table

    题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...

  3. UVa10820 Send a Table[欧拉函数]

    Send a TableInput: Standard Input Output: Standard Output When participating in programming contests ...

  4. uva 10820 (筛法构造欧拉函数)

    send a table When participating in programming contests, you sometimes face the following problem: Y ...

  5. UVA 10820 - Send a Table 数论 (欧拉函数)

    Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...

  6. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  10. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. Apache Kylin 是什么?

    Apache Kylin的官网 http://kylin.apache.org/cn/ - 可扩展超快OLAP引擎:  Kylin是为减少在Hadoop上百亿规模数据查询延迟而设计 - Hadoop ...

  2. Web | 解决中文乱码

    设定文件的编码格式在head中添加 <head> <meta http-equiv="Content-Type" content="text/html; ...

  3. Python标准库 urllib

    urllib是python的一个获取url的模块.它用urlopen函数的形式提供了一个非常简洁的接口.这使得用各种各样的协议获取url成为可能.它同时 也提供了一个稍微复杂的接口来处理常见的状况-如 ...

  4. AIX系统常用命令

    netstat -an | grep 9090  可以看到该端口正被监听,但却不知道是哪个进程占用了该端口 1. netstat -Aan|grep 端口号找到该端口连接对应的PCB/ADDR和连接的 ...

  5. django 相关问题

    和数据库的连接 session的实现 django app开发步骤 python环境准备 数据库安装 model定义 url mapping定义 view定义 template定义 如何查看数据库里的 ...

  6. ubuntu16.04里如何正确添加用root用户来登录图形界面(图文详解)

    不多说,直接上干货! Ubuntu版本都默认不允许使用root登录,必须要改配置文件. 第一步: 首先设置root密码,利用现有管理员帐户登陆Ubuntu,在终端执行命令:sudo passwd ro ...

  7. RedHat7.2安装matplotlib——之Python.h:没有那个文件或目录

    按理说运行下面一句就可以安装了 pip install matplotlib 但是对于我的redhat7.2+python2.7.5,报了下面的错误 _posixsubprocess.c:3:20: ...

  8. FFmpegUtil

    这几天没事研究音频玩 比如 X配音app的配音功能 录一段 pcm或者wav格式的文件 替换mp4指定位置的音频刚开始卡在 pcm混合以及pcm指定位置插入.思路 一段段的视频进行切割 用到MP4Co ...

  9. [转]浅谈.NET下的多线程和并行计算(二)线程基本知识

    本文转自:http://www.cnblogs.com/lovecindywang/archive/2009/12/25/1632213.html 首先来看看如何创建线程: Console.Write ...

  10. 在服务端C#如何利用NPOI构建Excel模板

    目前本人接触过两种模板导出的方式:(1)C#利用NPOI接口制作Excel模板,在服务端用数据渲染模板(2)在前端利用前人搭建好的框架,利用office编写xml制作模板,在客户端进行数据的渲染,导出 ...