Description


When participating in programming contests, you sometimes face the following problem: You know

how to calcutale the output for the given input values, but your algorithm is way too slow to ever

pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that

would bring down the number of iterations to within acceptable limits.

Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half

an hour and produce a table of answers for all possible input values, encode this table into a program,

submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,

but remember: In love and programming contests everything is permitted).

Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.

But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program

small enough to pass the judge. The situation looked hopeless, until he discovered the following property

regarding the answers: the answers where calculated from two integers, but whenever the two

input values had a common factor, the answer could be easily derived from the answer for which the

input values were divided by that factor. To put it in other words:

Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range

[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer

from it by applying some simple calculations involving Answer(x, y) and k.

For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value

combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),

Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived

from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from

Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,

so Answer(3, 2) can not be derived from Answer(2, 3).

Now what we want you to do is: for any values of N from 1 upto and including 50000, give the

number of function Jimmy has to pre-calculate.

Input


The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which

indicates the value of N. Input is terminated by a line which contains a zero. This line should not be

processed.

Output


For each line of input produce one line of output. This line contains an integer which indicates how

many values Jimmy has to pre-calculate for a certain value of N.

Sample Input

2
5
0

Sample Output

3
19

题解


问小于n,且两元素互素的二元组有多少个,答案为

\[(2\cdot\sum_{i=1}^{n}phi(i))-1$$(二元组可以倒置,(1,1)除外)

###参考代码
```C++
#include <queue>
#include <cmath>
#include <cstdio>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=50005;
int phi[N];
void phi_table(int n){
for(int i=2;i<=n;i++) phi[i]=0;
phi[1]=1;
for(int i=2;i<=n;i++) if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
int ans[N];
int main(){
phi_table(50000);
for(int i=1;i<=50000;i++) ans[i]=ans[i-1]+phi[i];
while(true){
int n=read();
if(!n) break;
Out(2*ans[n]-1);
puts("");
}
return 0;
}
```\]

【UVA 10820】Send a Table(欧拉函数)的更多相关文章

  1. Uva 10820 Send a Table(欧拉函数)

    对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...

  2. UVa 10820 (打表、欧拉函数) Send a Table

    题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...

  3. UVa10820 Send a Table[欧拉函数]

    Send a TableInput: Standard Input Output: Standard Output When participating in programming contests ...

  4. uva 10820 (筛法构造欧拉函数)

    send a table When participating in programming contests, you sometimes face the following problem: Y ...

  5. UVA 10820 - Send a Table 数论 (欧拉函数)

    Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...

  6. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  10. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. Codeforces Round #319 (Div. 2)

    水 A - Multiplication Table 不要想复杂,第一题就是纯暴力 代码: #include <cstdio> #include <algorithm> #in ...

  2. 题解报告:hdu 1520 Anniversary party(树形dp入门)

    Problem Description There is going to be a party to celebrate the 80-th Anniversary of the Ural Stat ...

  3. debug授权码

    www.vfxcx.com 704835b5c54b56426257e0742568fe54

  4. Jquery 操作HTML5自定义属性data-*

    HTML5自定义属性规范的写法<a data-roleid="12"></a>,也可以直接写<a roleid="12">& ...

  5. 用户控件引用Entity Framework

    背景: 今天在做软件的时候,出现了问题,我在项目里面添加了Entity Framework,在form的代码里引用没有问题,在userControl里引用就出了问题. 我检查app.config文件 ...

  6. List<DTO>转 Map<String,List<DTO>> 两种写法

    List<TeamScheduleDTO> list = JSON.parseArray(response.getData().getJSONArray("list") ...

  7. Intent实现界面跳转、程序跳转

    一个程序往往由多个界面组成,界面之间的跳转,实质是Activity之间的跳转. 从当前程序跳转到其它程序,实质是启动了目标程序的入口Activity. Intent被称为意图,常用于组件之间的交互,可 ...

  8. P1303 A*B Problem

    题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式: 积 输入输出样例 输入样例#1: 1 2 输出样例#1: 2 说明 需用高精 #include<iostream> # ...

  9. objectbox基础

    objectbox基础 参考链接 官网地址 http://objectbox.io github地址 https://github.com/objectbox/objectbox-java https ...

  10. 8.3.3 快速系统调用 —— XP SP3上SystemCallStub的奇怪问题

    依书上的例子,ReadFile()函数会调用ntdll!NtReadFile(),后者将服务号放到eax之中,然后调用SharedUserData!SystemCallStub(),由此函数执行sys ...