题目:

BZOJ2565

分析:

首先看到回文串,肯定能想到Manacher算法。下文中字符串\(s\)是输入的字符串\(str\)在Manacher算法中添加了字符‘#’后的字符串 (构造方式如下)

string s = "#";
for (int i = 0; i < str.size(); i++)
{
s += str[i];
s += '#';
}

如果用\(maxl_i\)表示以第\(i\)个字符结尾的最长回文串的长度,\(maxr_i\)表示以第\(i\)个字符开头的最长回文串的长度,那么题目中要求的可以转化为在\(s\)中找一个位置\(i\),满足\(s_i\)是'#'且\(maxl_i+maxr_i\)最大。在原串\(str\)中,它是两个长度分别为\(\frac{maxl_i-1}{2}\)和\(\frac{maxr_i-1}{2}\)的回文串 (要减掉额外加进去的'#'字符) 。因此,算出\(maxl\)和\(maxr\)后,就可以枚举所有'#'字符来得到答案。

怎么算\(maxl\)和\(maxr\)呢?对于一个位置\(pos\),显然以它结尾的最长回文串的中心是一个最小的\(i\)满足\(pos-i<=p_i\) (\(p_i\)是Manacher中求出的以\(i\)为中心的回文串的“半径”),此时\(maxr_{pos}=(pos-i)*2+1\)。那么带着单调队列从左往右扫一遍就能算出\(maxr\),详见代码。同理,从右往左扫一遍可以算出\(maxl\)

代码:

我WA一下午,只因为局部变量没初始化……

#include <iostream>
#include <string>
using namespace std; namespace zyt
{
const int M = 1e5 * 2 + 10;
int p[M];
void manacher(const string &str)
{
string s = "#";
int id = 0, right = 0;
for (int i = 0; i < str.size(); i++)
{
s += str[i];
s += '#';
}
for (int i = 0; i < s.size(); i++)
{
if (i < right)
p[i] = min(p[id * 2 - i], right - i);
else p[i] = 1;
while (i - p[i] >= 0 && i + p[i] < s.size() && s[i - p[i]] == s[i + p[i]])
p[i]++;
if (i + p[i] > right)
right = i + p[i], id = i;
}
}
inline int abs(const int x)
{
return x >= 0 ? x : -x;
}
void mk_max(int *maxx, const int len, const bool flag)
{
static int q[M];
int h = 0, t = 0;
for (int i = 0; i < len; i++)
{
int pos = flag ? i : len - i - 1;
q[t++] = pos;
while (h < t && abs(pos - q[h]) >= p[q[h]])
h++;
maxx[pos] = abs(pos - q[h]) * 2 + 1;
}
}
void work()
{
string s;
static int maxl[M], maxr[M];
ios::sync_with_stdio(false);
cin >> s;
manacher(s);
mk_max(maxl, s.size() * 2 + 1, true);
mk_max(maxr, s.size() * 2 + 1, false);
int ans = 0;
for (int i = 0; i < s.size() * 2 + 1; i += 2)
if (maxl[i] > 1 && maxr[i] > 1)
ans = max(ans, (maxl[i] - 1) / 2 + (maxr[i] - 1) / 2);
cout << ans << endl;
}
}
int main()
{
zyt::work();
return 0;
}

【BZOJ2565】最长双回文串 (Manacher算法)的更多相关文章

  1. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  2. BZOJ2565:最长双回文串(Manacher)

    Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同). 输入长度为n的串S,求S的最长双回文子串T ...

  3. BZOJ2565最长双回文串——manacher

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同).输入长度为n的串S,求S的最长双回文子串T,即可将T分为两 ...

  4. luoguP4555 [国家集训队]最长双回文串 manacher算法

    不算很难的一道题吧.... 很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度 分别记为$L[i]$和$R[i]$ 由于求$R[i]$相当于把$L[i ...

  5. BZOJ2565 最长双回文串 【Manacher】

    BZOJ2565 最长双回文串 Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"c ...

  6. 【BZOJ2565】最长双回文串 Manacher

    [BZOJ2565]最长双回文串 Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同).输入长度为 ...

  7. BZOJ 2565: 最长双回文串 [Manacher]

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1842  Solved: 935[Submit][Status][Discu ...

  8. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  9. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

随机推荐

  1. 1.Zigbee开发学习资源

    http://blog.csdn.net/zhanglianpin/article/details/46907349

  2. 洛谷 3959 宝藏 NOIP2017提高组Day2 T2

    [题解] 状压DP. f[i]表示现在的点是否连接的状态是i. #include<cstdio> #include<cstring> #include<algorithm ...

  3. [spoj1182][Sorted Bit Sequence] (数位dp)

    Description Let's consider the 32 bit representation of all integers i from m up to n inclusive (m ≤ ...

  4. unigui+fastreport 打印【4】

    1.建立一个uniForm,用于建立FastReport打印界面.在Form上增加uniFrame.和传统的的报表打印设计一样一样的. 2.在beofeShow事情中: procedure TUniF ...

  5. 从“菜鸟”码农到“资深”架构师,我到底经历了什么?--------http://baijiahao.baidu.com/s?id=1585813883835208757&wfr=spider&for=pc

    http://baijiahao.baidu.com/s?id=1585813883835208757&wfr=spider&for=pc

  6. ViewService

    ViewService 在分布式系统中,最常见的场景就是主备架构.但是如果主机不幸宕机,如何正确的通知客户端当前后端服务器的状况成为一个值得研究的问题.本文描述了一种简单的模型用于解决此问题. 背景 ...

  7. 好不容易帮同事写的一个awk,要记下来

    给昌哥写的过滤的东东. 是实现了,但感觉丑,不规范. 记得下先. 原始数据格式: -- :: [ pool--thread-: ] - [ DEBUG ] origin match ::, user: ...

  8. 简单的事件处理类Event

    class Event{ constructor(){ this.handlers=[] } on(type,fn){ //订阅事件 if(!this.handlers[type]){ this.ha ...

  9. oracle 12c show con_name

    今天安装了一个oracle 12c的数据库做测试,在运行一个很简单的命令时出错了: SQL> show con_name concat "." (hex 2e) SP2: u ...

  10. Oracle GV$VIEW

    The catclustdb.sql script creates the GV$ views. Run this script if you do not create your database ...