题目大意

​  一个字符串\(s\)是\(1\)−回文串当且仅当这个串是回文串。

​  一个串\(s\)是\(k\)−回文串\((k>1)\)当且仅当\(s\)的前一半与后一半相同且\(s\)的前一半是非空\((k−1)\)−回文串。

​  一个串\(s\)的前一半是这个串的长度为\(\lfloor\frac{|s|}{2}\rfloor\)的前缀,一个串\(s\)的后一半是这个串的长度为\(\lfloor\frac{|s|}{2}\rfloor\)的后缀

​  有一个字符串\(s\),对于每个\(k\in\{1\ldots n\}\),求出\(s\)的多少个子串是\(k\)−回文串。

​  原题:\(1\leq n\leq 5000\)

​  加强版:\(1\leq n\leq 1000000\)

题解

​  我们可以发现,一个串是\(k\)-回文串,那么这个串就是\((k-1)\)-回文串\((k>1)\)

​  所以可以DP:设\(f_{i,j}\)表示\(s_{i\ldots j}\)最高是几阶回文串

​  时间复杂度:\(O(n^2)\)

​  我们还可以用BZOJ4044那道题的方法,在回文自动机上处理出每个串的长度不超过这个串长一半的最长回文后缀,然后直接转移即可

​  时间复杂度:\(O(n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
using namespace std;
typedef long long ll;
int nxt[1000010][30];
int fail[1000010];
int len[1000010];
int trans[1000010];
int a[1000010];
int f[1000010];
int cnt[1000010];
ll ans[1000010];
int p;
int n;
int last;
void init(int x)
{
int i;
for(i=1;i<=26;i++)
nxt[x][i]=2;
}
void add(int x)
{
a[++n]=x;
while(a[n-len[last]-1]!=a[n])
last=fail[last];
int cur=last;
if(nxt[cur][x]==2)
{
int now=++p;
init(p);
len[now]=len[cur]+2;
last=fail[last];
while(a[n-len[last]-1]!=a[n])
last=fail[last];
fail[now]=nxt[last][x];
if(len[fail[now]]<=len[now]/2)//没有这部分也可以AC
trans[now]=fail[now];
else
{
last=trans[cur];
while(len[last]+2>len[now]/2||a[n-len[last]-1]!=a[n])
last=fail[last];
trans[now]=nxt[last][x];
}
nxt[cur][x]=now;
}
last=nxt[cur][x];
cnt[last]++;
}
void solve()
{
f[1]=0;
f[2]=0;
int i;
for(i=3;i<=p;i++)
if(len[trans[i]]==len[i]/2)
f[i]=f[trans[i]]+1;
else
f[i]=1;
for(i=p;i>=3;i--)
cnt[fail[i]]+=cnt[i];
for(i=3;i<=p;i++)
ans[f[i]]+=cnt[i];
}
char s[1000010];
int main()
{
// freopen("necklace.in","r",stdin);
// freopen("necklace.out","w",stdout);
p=0;
n=0;
init(++p);
fail[p]=2;
len[p]=-1;
trans[p]=2;
init(++p);
fail[p]=1;
len[p]=0;
a[0]=-1;
trans[p]=1;
last=p;
int m;
scanf("%s",s+1);
m=strlen(s+1);
int i;
for(i=1;i<=m;i++)
add(s[i]-'a'+1);
solve();
for(i=m-1;i>=1;i--)
ans[i]+=ans[i+1];
for(i=1;i<=m;i++)
printf("%lld\n",ans[i]);
return 0;
}

【XSY2534】【CF835D】Palindromic characteristics 回文自动机的更多相关文章

  1. [加强版] Codeforces 835D Palindromic characteristics (回文自动机、DP)

    题目链接: https://codeforces.com/contest/835/problem/D 题意: 一个回文串是\(1\)-回文的,如果一个回文串的左半部分和右半部分一样且都是\(k\)-回 ...

  2. Palindromic Tree 回文自动机-回文树 例题+讲解

    回文树,也叫回文自动机,是2014年被西伯利亚民族发明的,其功能如下: 1.求前缀字符串中的本质不同的回文串种类 2.求每个本质不同回文串的个数 3.以下标i为结尾的回文串个数/种类 4.每个本质不同 ...

  3. 【知识总结】回文自动机(Palindrome_Automaton)

    参考资料:Palindromic Tree--回文树[处理一类回文串问题的强力工具](请注意,其中似乎有一些错误) 回文自动机似乎和回文树是同一个东西qwq? 回文自动机(PAM)是一种处理回文串的工 ...

  4. URAL 2040 (回文自动机)

    Problem Palindromes and Super Abilities 2 (URAL2040) 题目大意 给一个字符串,从左到右依次添加,询问每添加一个字符,新增加的回文串数量. 解题分析 ...

  5. URAL 2040 Palindromes and Super Abilities 2 (回文自动机)

    Palindromes and Super Abilities 2 题目链接: http://acm.hust.edu.cn/vjudge/contest/126823#problem/E Descr ...

  6. 后缀自动机/回文自动机/AC自动机/序列自动机----各种自动机(自冻鸡) 题目泛做

    题目1 BZOJ 3676 APIO2014 回文串 算法讨论: cnt表示回文自动机上每个结点回文串出现的次数.这是回文自动机的定义考查题. #include <cstdlib> #in ...

  7. [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串

    回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...

  8. BZOJ2160拉拉队排练——回文自动机

    题目描述 艾利斯顿商学院篮球队要参加一年一度的市篮球比赛了.拉拉队是篮球比赛的一个看点,好的拉拉队往往能帮助球队增加士气,赢得最终的比赛.所以作为拉拉队队长的楚雨荨同学知道,帮助篮球队训练好拉拉队有多 ...

  9. BZOJ2084[Poi2010]Antisymmetry——回文自动机

    题目描述 对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一样,就称作“反对称”字符串.比如00001111和010101就是反对称的,1001就不是.现在给出一个长度为N的0 ...

随机推荐

  1. Vicious Keyboard CodeForces - 801A (暴力+模拟)

    题目链接 题意: 给定一个字符串,最多更改一个字符,问最多可以有多少个“VK”子串? 思路: 由于数据量很小,不妨尝试暴力写.首先算出不更改任何字符的情况下有多个VK字串,然后尝试每一次更改一个位置的 ...

  2. mysql数据的导入和导出

    一. mysqldump工具基本用法,不适用于大数据备份   1. 备份所有数据库: mysqldump -u root -p --all-databases > all_database_sq ...

  3. Day15 Python基础之logging模块(十三)

    参考源:http://www.cnblogs.com/yuanchenqi/articles/5732581.html logging模块 (****重点***) 一 (简单应用) import lo ...

  4. rbac权限+中间件

    1.权限组件rbac 1.什么是权限 1 项目与应用 2 什么是权限? 一个包含正则表达式url就是一个权限 who what how ---------->True or Flase 2.版本 ...

  5. 自己实现数据结构系列五---BinarySearchTree

    一.二分搜索树: 1.代码: public class BST<E extends Comparable<E>> { private class Node{ public E ...

  6. 渗透测试平台bwapp简单介绍及安装

    先来介绍一下bwapp bwapp是一款非常好用的漏洞演示平台,包含有100多个漏洞 SQL, HTML, iFrame, SSI, OS Command, XML, XPath, LDAP, PHP ...

  7. 关于JS动画和CSS3动画的性能差异

    本文章为综合其它资料所得. 根据Google Developer,Chromium项目里,渲染线程分为main thread和compositor thread. 如果CSS动画只是改变transfo ...

  8. Day 4-8 hashlib加密模块

    HASH Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射 ...

  9. bootstrap modal垂直居中(简单封装)

    1.使用modal 弹出事件方法: 未封装前: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  10. scrapy全站爬取拉勾网及CrawSpider介绍

    一.指定模板创建爬虫文件 命令 创建成功后的模板,把http改为https 二.CrawSpider源码介绍 1.官网介绍: 这是用于抓取常规网站的最常用的蜘蛛,因为它通过定义一组规则为跟踪链接提供了 ...