题目描述 Description

有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1]。问安排怎样的合并顺序,能够使得总合并代价达到最小。

输入描述 Input Description

第一行一个整数n(n<=3000)

第二行n个整数w1,w2...wn  (wi <= 3000)

输出描述 Output Description

一个整数表示最小合并代价

样例输入 Sample Input

4

4 1 1 4

样例输出 Sample Output

18

数据范围及提示 Data Size & Hint

数据范围相比“石子归并” 扩大了

也没啥好说的,

就是四边形不等式优化

证明我也不会

丢个博客链接

http://blog.csdn.net/noiau/article/details/72514812
#include<cstdio>
#include<cstring>
const int MAXN=1e5+,INF=1e8+;
using namespace std;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin)),p1==p2?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
int dp[][],sum[MAXN],s[][];
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
int N=read();
for(int i=;i<=N;i++) sum[i]=read(),sum[i]+=sum[i-],s[i][i]=i;
for(int i=N;i>=;i--)
{
for(int j=i+;j<=N;j++)
{
int mn=INF,mnpos=;
for(int k=s[i][j-];k<=s[i+][j];k++)
{
if(dp[i][k]+dp[k+][j]+sum[j]-sum[i-] < mn)
{
mn=dp[i][k]+dp[k+][j]+sum[j]-sum[i-];
mnpos=k;
}
}
dp[i][j]=mn;
s[i][j]=mnpos;
}
}
printf("%d",dp[][N]);
return ;
}

codevs3002 石子归并 3的更多相关文章

  1. codevs3002 石子归并3

    3002 石子归并 3 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安 ...

  2. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  3. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  4. 51nod 1021 石子归并(dp)

    51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...

  5. 51nod1022 石子归并 V2

    证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件证明m满足四边形不等式证明s[i,j ...

  6. Codevs 1048 石子归并

    1048 石子归并 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合 ...

  7. Codevs_2102_石子归并2_(环状动态规划)

    描述 http://codevs.cn/problem/2102/ 2102 石子归并 2 时间限制: 10 s 空间限制: 256000 KB 题目等级 : 黄金 Gold           题目 ...

  8. Codevs_1048_石子归并_(动态规划)

    描述 http://codevs.cn/problem/1048/  1048 石子归并 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Des ...

  9. 51 nod 1023 石子归并 V3(GarsiaWachs算法)

    1023 石子归并 V3基准时间限制:2 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一 ...

随机推荐

  1. Docker学习笔记-CentOS7镜像

    前言: 环境:centos7.5 64 位 正文: 第一步:下载centos7镜像 docker pull centos 第二步:建立centos7的容器 sudo docker run --priv ...

  2. 《http权威指南》读书笔记5

    概述 最近对http很感兴趣,于是开始看<http权威指南>.别人都说这本书有点老了,而且内容太多.我个人觉得这本书写的太好了,非常长知识,让你知道关于http的很多概念,不仅告诉你怎么做 ...

  3. The SDK 'Microsoft.NET.Sdk' specified could not be found.

    有一台电脑用 VS Code 开发 .NET Core 项目时,每次打开文件夹都有一个错误(标题),定位在 C# 插件,鼠标放在代码上没有智能提醒,输入代码时没有补全提示,重装 VS Code 和所有 ...

  4. Ubuntu 16.04下GDB调试

    在linux中还有一个更受大家欢迎的调试工具:GDB.GDB是一个由GNU开源组织发布的.UNIX/LINUX操作系统下的.基于命令行的.功能强大的程序调试工具.可以用来调试C,C++程序. GDB功 ...

  5. netty中的传输

    终于在课设的闲时间把netty实战的四五章给解决了 这里来记录一下第四章里面所讲的IO 首先说到IO,我想,必须要先了解阻塞,非阻塞,同步和异步这四个词 看到一个讲的很易懂的例子:https://ww ...

  6. 运维笔记--ubuntu rm删除文件后 恢复

    待补充 特别注意:umount分区,尝试恢复文件,文件夹(目录),全部文件 https://www.cnblogs.com/wangxiaoqiangs/p/5630288.html https:// ...

  7. shell脚本命令(记录)

    1.重命名文件 将D盘下的A.txt 重命名为B.txt mv D:\\A.txt D:\\B.txt 2.删除文件 删除D盘下的A.txt文件 rm D:\\A.txt 3.修改文件内容并保存 // ...

  8. 基于Electron+.NET Core的前后端分离的跨平台桌面应用

    Web做界面比原生桌面界面开发速度真心要快很多,而且组件也多. 分析: 1..NET Core和Electron都是跨平台的. 2.NET Core做后端很方便,但是没有GUI,Electron做桌面 ...

  9. salesforce lightning零基础学习(十一) Aura框架下APP构造实现

    前面的一些lightning文章讲述了aura的基础知识,aura封装的常用js以及aura下的事件处理.本篇通过官方的一个superbadge来实现一个single APP的实现. superbad ...

  10. Appcan开发笔记:导出Excel文件

    Appcan IDE为4.0+; appcan提供了导出文件的方法 appcan.file.write 文件会自动创建,要解决的事情是Excel用字符串输出,可以考虑 csv(逗号间隔).HTML.X ...