GridsearchCV调参
在利用gridseachcv进行调参时,其中关于scoring可以填的参数在SKlearn中没有写清楚,就自己找了下,具体如下:
parameters = {'eps':[0.3,0.4,0.5,0.6], 'min_samples':[20,30,40]}
db = DBSCAN(metric='cosine', algorithm='brute').fit(xx)
grid = GridSearchCV(db, parameters, cv=5, scoring='adjusted_rand_score')
Scoring | Function | Comment |
---|---|---|
Classification | ||
‘accuracy’ | metrics.accuracy_score |
|
‘average_precision’ | metrics.average_precision_score |
|
‘f1’ | metrics.f1_score |
for binary targets |
‘f1_micro’ | metrics.f1_score |
micro-averaged |
‘f1_macro’ | metrics.f1_score |
macro-averaged |
‘f1_weighted’ | metrics.f1_score |
weighted average |
‘f1_samples’ | metrics.f1_score |
by multilabel sample |
‘neg_log_loss’ | metrics.log_loss |
requires predict_proba support |
‘precision’ etc. | metrics.precision_score |
suffixes apply as with ‘f1’ |
‘recall’ etc. | metrics.recall_score |
suffixes apply as with ‘f1’ |
‘roc_auc’ | metrics.roc_auc_score |
|
Clustering | ||
‘adjusted_rand_score’ | metrics.adjusted_rand_score |
|
Regression | ||
‘neg_mean_absolute_error’ | metrics.mean_absolute_error |
|
‘neg_mean_squared_error’ | metrics.mean_squared_error |
|
‘neg_median_absolute_error’ | metrics.median_absolute_error |
|
‘r2’ | metrics.r2_score |
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
但后面听另外一个课的时候老师说,对于特征较多的模型不建议用gridSearch ,耗时,而且只是在train上表现好的参数,不一定在跨时间验证集上表现好
建议设计调参 ,设计的目标是跨时间验证集的KS要最大化,同时跨时间验证集和训练集的KS差距最小
调参方法
- offks + 0.8(offks - devks)最大化
import pandas as pd
from sklearn.metrics import roc_auc_score,roc_curve,auc
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
import numpy as np
import random
import math
import lightgbm as lgb
from sklearn.model_selection import train_test_split data = pd.read_csv('Acard.txt') train = data[data.obs_mth != '2018-11-30'].reset_index().copy()
val = data[data.obs_mth == '2018-11-30'].reset_index().copy()
feature_lst = ['person_info','finance_info','credit_info','act_info']
x = train[feature_lst]
y = train['bad_ind'] val_x = val[feature_lst]
val_y = val['bad_ind'] train_x,test_x,train_y,test_y = train_test_split(x,y,random_state=0,test_size=0.2) #改变我们想去调整的参数为value,设置调参区间
min_value = 40
max_value = 60
for value in range(min_value,max_value+1):
best_omd = -1
best_value = -1
best_ks=[]
def lgb_test(train_x,train_y,test_x,test_y):
clf =lgb.LGBMClassifier(boosting_type = 'gbdt',
objective = 'binary',
metric = 'auc',
learning_rate = 0.1,
n_estimators = value,
max_depth = 5,
num_leaves = 20,
max_bin = 45,
min_data_in_leaf = 6,
bagging_fraction = 0.6,
bagging_freq = 0,
feature_fraction = 0.8,
silent=True
)
clf.fit(train_x,train_y,eval_set = [(train_x,train_y),(test_x,test_y)],eval_metric = 'auc')
return clf,clf.best_score_['valid_1']['auc'],
lgb_model , lgb_auc = lgb_test(train_x,train_y,test_x,test_y) y_pred = lgb_model.predict_proba(x)[:,1]
fpr_lgb_train,tpr_lgb_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lgb_train - tpr_lgb_train).max() y_pred = lgb_model.predict_proba(val_x)[:,1]
fpr_lgb,tpr_lgb,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lgb - tpr_lgb).max() Omd= val_ks + 0.8*(val_ks - train_ks)
if Omd>best_omd:
best_omd = Omd
best_value = value
best_ks = [train_ks,val_ks]
print('best_value:',best_value)
print('best_ks:',best_ks)
GridsearchCV调参的更多相关文章
- lightgbm调参方法
gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www. ...
- LightGBM调参笔记
本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀 ...
- GridSearchCV 与 RandomizedSearchCV 调参
GridSearchCV GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证. 这两个概念都比较好理解,网格搜索,搜索的是参数,即在指定的参数范 ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- GridSearchCV和RandomizedSearchCV调参
1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优. 使用GirdSearchCV模板 # Use scikit-learn to grid search the ...
- scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...
- scikit-learn 梯度提升树(GBDT)调参小结
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 调参必备---GridSearch网格搜索
什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...
随机推荐
- [agc016B][Colorful Hats]
题目链接 思路 首先,如果没人说谎那么序列中肯定只有一大一小两种数,假设大的数为x,小的数为y.因为对于每个人只有两种情况,要么自己与除自己外的某个人拥有相同的颜色,此时总颜色数就是这个人所能看到的颜 ...
- 3D游戏的角色移动
* -----英雄的移动控制 * * * * */ using System.Collections; using System.Collections.Generic; using UnityEng ...
- POJ 2823 Sliding Window (单调队列)
单调队列 加了读入挂比不加更慢.... 而且这份代码要交c++ 有大神G++跑了700ms..... orzorzorz #include<iostream> #include<cs ...
- logistics回归简单应用——梯度下降,梯度上升,牛顿算法(一)
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.s ...
- 8款压箱底的Mac屏幕截图和录音录像工具软件,请你务必低调使用
以下几款是是Mac上优秀的屏幕截图.录像和录音工具,有了这些工具,在Mac上进行截屏.录制视频或者录音都会事半功倍. 1. Snagit Mac上最好用最强大的屏幕截图工具,支持各种方式的屏幕截图以及 ...
- django中文学习资料
Django 2.0 中文官方文档地址: https://docs.djangoproject.com/zh-hans/2.0/ <Django Girls>中文版地址: https:// ...
- u-boot(五)内核启动
目录 u-boot(五)内核启动 概述 分区空间 内核文件格式 内核复制跳转 内核启动 机器ID 启动参数 (起始tag)setup_start_tag 内存设置 根文件系统,启动程序,串口设备 (结 ...
- Linux top、VIRT、RES、SHR、SWAP(S)、DATA Memory Parameters Detailed
catalog . Linux TOP指令 . VIRT -- Virtual Image (KB) . RES -- Resident size (KB) . SHR -- Shared Memor ...
- 01--STL泛型编程了解
开始学习侯捷老师的课程了~~ 一:六大组件关系 容器(Container) 算法(Algorithm) 迭代器(Iterator) 仿函数(Function object) 适配器(Adaptor) ...
- spring整合curator实现分布式锁
为什么要有分布式锁? 比如说,我们要下单,分为两个操作,下单成功(订单服务),扣减库存(商品服务).如果没有锁的话,同时两个请求进来.先检查有没有库存,一看都有,然后下订单,减库存.这时候肯定会出现错 ...