题目描述

世博期间,上海的航空客运量大大超过了平时,随之而来的航空管制也频频发生。最近,小X就因为航空管制,连续两次在机场被延误超过了两小时。对此,小X表示很不满意。

在这次来烟台的路上,小X不幸又一次碰上了航空管制。于是小X开始思考关于航空管制的问题。

假设目前被延误航班共有n个,编号为1至n。机场只有一条起飞跑道,所有的航班需按某个顺序依次起飞(称这个顺序为起飞序列)。定义一个航班的起飞序号为该航班在起飞序列中的位置,即是第几个起飞的航班。

起飞序列还存在两类限制条件:

• 第一类(最晚起飞时间限制):编号为i的航班起飞序号不得超过ki;

• 第二类(相对起飞顺序限制):存在一些相对起飞顺序限制(a, b),表示航班a的起飞时间必须早于航班b,即航班a的起飞序号必须小于航班b的起飞序号。

小X思考的第一个问题是,若给定以上两类限制条件,是否可以计算出一个可行的起飞序列。第二个问题则是,在考虑两类限制条件的情况下,如何求出每个航班在所有可行的起飞序列中的最小起飞序号。

题解

我好菜啊。。

对于第一问,我们可以倒着贪心,尽量把k大的往后放,搞一个以k为关键字的大根堆,在反图上拓扑一下就可以了,我在这想了半天,太菜了。。。

对于第二问,我们还是倒着放,和上边一样,这次我们不在堆中放i这个点,直到出现一个不合法的点出现,这时我们再加入i点就可以了。

这样的思路和这道题一样。

代码

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define N 2002
#define M 10002
using namespace std;
int k[N],n,m,tot,head[N],du[N],num,pos[N],ans[N],d[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to;}e[M];
inline void add(int u,int v){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;}
struct node{
int id;
inline bool operator <(const node &b)const{return k[id]<k[b.id];}
};
struct wf{int u,v;}b[M];
priority_queue<node>q;
int main(){
n=rd();m=rd();
for(int i=;i<=n;++i)k[i]=rd();
for(int i=;i<=m;++i){
b[i].u=rd();b[i].v=rd();
add(b[i].v,b[i].u);d[b[i].u]++;
}
memcpy(du,d,sizeof(d));
for(int i=;i<=n;++i)if(!du[i])q.push(node{i});
while(!q.empty()){
int u=q.top().id;q.pop();num++;pos[num]=u;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(!--du[v])q.push(node{v});
}
}
for(int i=n;i>=;--i)printf("%d ",pos[i]);puts("");
for(int o=;o<=n;++o){
while(!q.empty())q.pop();
memcpy(du,d,sizeof(d));
for(int i=;i<=n;++i)if(!du[i]&&i!=o)q.push(node{i});
for(int g=n;g>=;--g){
if(q.empty()){ans[o]=g;break;}
int u=q.top().id;q.pop();
if(k[u]<g){ans[o]=g;break;}
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(!--du[v]&&v!=o)q.push(node{v});
}
}
}
for(int i=;i<=n;++i)printf("%d ",ans[i]);
return ;
}

[NOI2010]航空管制(拓扑排序+贪心)的更多相关文章

  1. BZOJ 2109 航空管制(拓扑排序+贪心)

    绝世好题啊.. 题意:给出一个DAG,和每个点要求出现在这个DAG里面的拓扑排序的位置<=ti,求出所有可能的拓扑排序里面每个点出现的位置的最小值. 正着做不好做,考虑反着做,建立这个图的反图. ...

  2. BZOJ.2109.[NOI2010]航空管制(拓扑 贪心)

    题目链接 双倍经验(没有第一问) \(Description\) \(Solution\) 第一问拓扑排序即可. 第二问,即让一个元素在拓扑序中尽量靠前,好像不好做. 但是可以让一个元素出现尽量靠后. ...

  3. NOI2010航空管制

    2008: [Noi2010]航空管制 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 31  Solved: 0[Submit][Status] De ...

  4. BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心

    BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜 ...

  5. BZOJ2535: [Noi2010]Plane 航空管制2(拓扑排序 贪心)

    题意 题目链接 Sol 非常妙的一道题. 首先不难想到拓扑排序,但是直接对原图按\(k\)从小到大拓扑排序是错的.因为当前的\(k\)大并不意味着后面的点\(k\)也大 但是在反图上按\(k\)从大到 ...

  6. [BZOJ2109][NOI2010]航空管制(贪心+拓扑)

    2109: [Noi2010]Plane 航空管制 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1227  Solved: 510[Submit][ ...

  7. bzoj2535 [Noi2010]航空管制

    Description 世博期间,上海的航空客运量大大超过了平时,随之而来的航空管制也频频发生.最近,小X就因为航空管制,连续两次在机场被延误超过了两小时.对此,小X表示很不满意. 在这次来烟台的路上 ...

  8. POJ3687 Labeling Balls(拓扑排序\贪心+Floyd)

    题目是要给n个重量1到n的球编号,有一些约束条件:编号A的球重量要小于编号B的重量,最后就是要输出字典序最小的从1到n各个编号的球的重量. 正向拓扑排序,取最小编号给最小编号是不行的,不举出个例子真的 ...

  9. 2019.01.20 bzoj5158 Alice&Bob(拓扑排序+贪心)

    传送门 短代码简单题. 题意简述:对于一个序列XXX,定义其两个伴随序列a,ba,ba,b,aia_iai​表示以第iii个数结尾的最长上升子序列长度,bib_ibi​表示以第iii个数开头的最长下降 ...

随机推荐

  1. python Drools

    python Drools - 国际版 Binghttps://cn.bing.com/search?q=python+Drools&qs=n&FORM=BESBTB&sp=- ...

  2. Linux上的一些基本常用命令

    上传下载文件:// 首先安装lrzsz # yum -y install lrzsz // 上传文件,执行命令rz,会跳出文件选择窗口,选择好文件,点击确认即可.# rz // 下载文件,执行命令sz ...

  3. 获取打开页面时的当前时间(yyyy-MM-dd hh:mm:ss)

    Date.prototype.Format = function (fmt) { var o = { "M+": this.getMonth() + 1, //月份 "d ...

  4. PMP三点

    三点估算:悲观36天,可能21天,乐观6天.在16至26天内完成的概率是多少?这个算法是PERT估算最终估算结果=(悲观工期+乐观工期+4×最可能工期)/6=(36+6++4*21)/6=21标准差= ...

  5. 异步httpclient(httpasyncclient)的使用与总结

    参考:异步httpclient(httpasyncclient)的使用与总结 1. 前言应用层的网络模型有同步与异步.同步意味当前线程是阻塞的,只有本次请求完成后才能进行下一次请求;异步意味着所有的请 ...

  6. list类型功能剖析

    append  向后追加 name_list=["eirc","alex","tony"] name_list.append('seven' ...

  7. PLSQL 汉化

    自动导入PLSQL安装目录: 一直下一步就可以了: 之后重新打开:

  8. java开发支付宝支付详细流程_demo的运行

    首先我要吐槽一下支付宝的开放平台简直就是一个迷宫,赞同的顶一下,下面我把要下载的地址给贴出来要不真不好找: 一.准备工作 1.签名工具下载 https://docs.open.alipay.com/2 ...

  9. P2123 皇后游戏

    题目背景 还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年 过去了.国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游 戏的另一个问题. 题目描述 皇后 ...

  10. python--使用pymyslq操作数据库

    1.安装pymysql 在命令行内输入 pip install pymysql : 2.pycharm连接mysql 在进行本文以下内容之前需要注意: 你有一个MySQL数据库,并且已经启动. 你有可 ...