BZOJ1396 识别子串 字符串 SAM 线段树
原文链接http://www.cnblogs.com/zhouzhendong/p/9004467.html
题目传送门 - BZOJ1396
题意
给定一个字符串$s$,$|s|\leq 10^5$。
对于$s$的每一个位置,求$s$的包含该位置的、仅在$s$中出现一次的连续子串的最短长度。
题解
考虑先对于$s$构建一个后缀自动机。
由于我们要考虑的串是只能在$s$中出现一次的。
所以我们先基数排序,然后通过$fa$指针计算每一个节点的$Right$集合。
只出现一次的就是$Right$集合大小为$1$的。
对于$Right$大小为$1$的节点$i$,首先我们得知$s[Right(i)-Max(i)+1\cdots Right(i)]$是只出现一次的,所以我们开个线段树,直接标记永久化,让$Right(i)-Max(i)+1\cdots Right(i)$的答案对于$Max(i)$取个$\min$。又考虑到$s[Right(i)-j+1\cdots Right(i)|Max(i)\geq j > Max(fa(i))]$也是只出现一次的,只不过区间对某一个定值取$\min$改成了对等差数列取$\min$而已。
于是只需要开两棵标记永久化的线段树即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,Min[N<<2],Min2[N<<2];
int root=1,size=1,last=1;
int plast[N],tax[N],totend[N<<1],id[N<<1];
char s[N];
struct SAM{
int Next[26],fa,Max;
}t[N<<1];
void extend(int c){
int p=last,np=++size,q,nq;
t[np].Max=t[p].Max+1;
for (;!t[p].Next[c];p=t[p].fa)
t[p].Next[c]=np;
q=t[p].Next[c];
if (t[q].Max==t[p].Max+1)
t[np].fa=q;
else {
nq=++size;
t[nq]=t[q],t[nq].Max=t[p].Max+1;
t[q].fa=t[np].fa=nq;
for (;t[p].Next[c]==q;p=t[p].fa)
t[p].Next[c]=nq;
}
last=np;
}
void build(int rt,int L,int R){
Min[rt]=n,Min2[rt]=n*2;
if (L==R)
return;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
void update1(int rt,int L,int R,int xL,int xR,int v){
if (L>xR||xL>R)
return;
if (xL<=L&&R<=xR){
Min[rt]=min(Min[rt],v);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update1(ls,L,mid,xL,xR,v);
update1(rs,mid+1,R,xL,xR,v);
}
void update2(int rt,int L,int R,int xL,int xR,int v){
if (L>xR||xL>R)
return;
if (xL<=L&&R<=xR){
Min2[rt]=min(Min2[rt],v);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update2(ls,L,mid,xL,xR,v);
update2(rs,mid+1,R,xL,xR,v-(mid-L+1));
}
int query(int rt,int L,int R,int x){
if (L==R)
return min(Min[rt],Min2[rt]);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (x<=mid)
return min(query(ls,L,mid,x),min(Min[rt],Min2[rt]-(x-L)));
else
return min(query(rs,mid+1,R,x),min(Min[rt],Min2[rt]-(x-L)));
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
t[0].Max=-1;
for (int i=0;i<26;i++)
t[0].Next[i]=1;
for (int i=1;i<=n;i++)
extend(s[i]-'a'),plast[i]=last;
for (int i=1;i<=size;i++)
tax[t[i].Max]++;
for (int i=1;i<=n;i++)
tax[i]+=tax[i-1];
for (int i=1;i<=size;i++)
id[tax[t[i].Max]--]=i,totend[i]=-1;
for (int i=1;i<=n;i++)
totend[plast[i]]=i;
for (int i=size;i>=1;i--){
int &fa=totend[t[id[i]].fa],&now=totend[id[i]];
fa=fa==-1?now:-2;
}
build(1,1,n);
for (int i=2;i<=size;i++){
if (totend[i]<0)
continue;
int p3=totend[i],p2=p3-t[i].Max+1,p1=p3-t[t[i].fa].Max;
update1(1,1,n,p1,p3,t[t[i].fa].Max+1);
update2(1,1,n,p2,p1,t[i].Max+(p2-1));
}
for (int i=1;i<=n;i++)
printf("%d\n",query(1,1,n,i));
return 0;
}
BZOJ1396 识别子串 字符串 SAM 线段树的更多相关文章
- bzoj1396识别子串(SAM+线段树)
复习SAM板子啦!考前刷水有益身心健康当然这不是板子题/水题…… 很容易发现只在i位置出现的串一定是个前缀串.那么对答案的贡献分成两部分:一部分是len[x]-fa~len[x]的这部分贡献会是r-l ...
- bzoj 1396: 识别子串【SAM+线段树】
建个SAM,符合要求的串显然是|right|==1的节点多代表的串,设si[i]为right集合大小,p[i]为right最大的r点,这些都可以建出SAM后再parent树上求得 然后对弈si[i]= ...
- BZOJ1396: 识别子串(后缀自动机 线段树)
题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...
- BZOJ1396 识别子串【SAM+SegmentTree】
BZOJ1396 识别子串 给定一个串\(s\),对于串中的每个位置,输出经过这个位置且只在\(s\)中出现一次的子串的最短长度 朴素的想法是,我们要找到那些只出现一次的子串,之后遍历每个串,把串所覆 ...
- 【BZOJ1396】识别子串 - 后缀自动机+线段树
题意: Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. 题解: ...
- bzoj1396&&2865 识别子串 后缀自动机+线段树
Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample Input agoodco ...
- BZOJ 1396&&2865 识别子串[后缀自动机 线段树]
Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...
- BZOJ 1396: 识别子串( 后缀数组 + 线段树 )
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...
- UOJ#395. 【NOI2018】你的名字 字符串,SAM,线段树合并
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ395.html 题解 记得同步赛的时候这题我爆0了,最暴力的暴力都没调出来. 首先我们看看 68 分怎么做 ...
随机推荐
- PyJWT 使用
最近要用 Falsk 开发一个大点的后端,为了安全考虑,弃用传统的Cookie验证.转用JWT. 其实 Falsk 有一个 Falsk-JWT 但是我觉得封装的太高,还是喜欢通用的 PyJWT . J ...
- SqlBulkCopy 之 Received an invalid column length from the bcp client for colid 5.
SqlBulkCopy 批量复制报错: Received an invalid column length from the bcp client for colid 5. 翻译:从bcp客户端收到一 ...
- Confluence 6 启用 OpenSearch
在 OpenSearch autodiscovery 自动发现,你可以添加 Confluence 搜索到你的的 Firefox 或者 IE7 查找对话框中(请参考 Searching Conflue ...
- html超文本标记语言
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 好用的JS拖拽插件
下载artDialog插件的时候发现它把拖拽单独封装成了一个方法,挺好用的,使用方法如下... 第一种拖拽方式-点击容器指定区域进行拖拽 $('.ui-dialog').on(DragEvent.ty ...
- python并发编程之多进程2-------------数据共享及进程池和回调函数
一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实 ...
- Java 并发类
java.util.concurrent包里 提供了一批线程安全的类 一. java.util.concurrent.atomic java.util.concurrent.atomic包里的原子处理 ...
- medir设置
setting中 MEDIA_URL="/media/"MEDIA_ROOT=os.path.join(BASE_DIR, "app01","medi ...
- C++ Primer 笔记——语句
switch 内部的变量定义 1.因为C++语言规定,不允许跨过变量的初始化语句直接跳转到该变量作用域内的另一位置,所以有了如下情况: bool bsuccess = false; switch (b ...
- 设置IDEA中的web