1. 线性关系数据可视化

lmplot( )

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline sns.set_style("darkgrid")
sns.set_context("paper")
# 设置风格、尺度 import warnings
warnings.filterwarnings('ignore')
# 不发出警告
# 基本用法

tips = sns.load_dataset("tips")
print(tips.head())
# 加载数据 sns.lmplot(x="total_bill", y="tip", hue = 'smoker',data=tips,palette="Set1",
ci = 70, # 误差值
size = 5, # 图表大小
markers = ['+','o'], # 点样式
)

# 拆分多个表格

sns.lmplot(x="total_bill", y="tip", col="smoker", data=tips)

# 多图表1

sns.lmplot(x="size", y="total_bill", hue="day", col="day",data=tips,
aspect=0.6, # 长宽比
x_jitter=.30, # 给x或者y轴随机增加噪音点
col_wrap=4, # 每行的列数
)

# 多图表2

sns.lmplot(x="total_bill", y="tip", row="sex", col="time",data=tips, size=4)
# 行为sex字段,列为time字段
# x轴total_bill, y轴tip

# 非线性回归

sns.lmplot(x="total_bill", y="tip",data=tips,
order = 2) #可以做更高阶的回归;2就是按照2次方做回归;

2. 时间线图表

 sns. tsplot( )

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline sns.set_style("darkgrid")
sns.set_context("paper")
# 设置风格、尺度 import warnings
warnings.filterwarnings('ignore')
# 不发出警告
# 1、时间线图表 - tsplot()
# 简单示例 x = np.linspace(0, 15, 31)
data = np.sin(x) + np.random.rand(10, 31) + np.random.randn(10, 1)
print(data.shape)
print(pd.DataFrame(data).head()) #每一行数据是一个变量,31列是代表有31天或31种情况下的观测值。
# 创建数 sns.tsplot(data=data,
err_style="ci_band", # 误差数据风格,可选:ci_band, ci_bars, boot_traces, boot_kde, unit_traces, unit_points
interpolate=True, # 是否连线
ci = [40,70,90], # 设置误差 置信区间
color = 'g' # 设置颜色
)

一个变量里边有10个变量,每个变量里边有31个观测值

 10个变量,做了一个均值的估计,其他31个维度代表它的变化程度。

# 1、时间线图表 - tsplot()
# 简单示例 sns.tsplot(data=data, err_style="boot_traces",
n_boot=300 # 迭代次数,就是有多少个线;
)

# 1、时间线图表 - tsplot()
# 参数设置 gammas = sns.load_dataset("gammas")
print(gammas.head())
print('数据量为:%i条' % len(gammas))
print('timepoint为0.0时的数据量为:%i条' % len(gammas[gammas['timepoint'] == 0]))
print('timepoint共有%i个唯一值' % len(gammas['timepoint'].value_counts()))
# print(gammas['timepoint'].value_counts()) # 查看唯一值具体信息
# 导入数据 sns.tsplot(time="timepoint", # 时间数据,x轴
value="BOLD signal", # y轴value
unit="subject", #
condition="ROI", # 分类
data=gammas)
# gammas[['ROI', 'subject']]

3.热图

sns.heatmap()

# 2、热图 - heatmap()
# 简单示例
df = pd.DataFrame(np.random.rand(10,12))
# 创建数据 - 10*12图表 sns.heatmap(df, # 加载数据
vmin=0, vmax=1 # 设置图例最大最小值
)

# 2、热图 - heatmap()
# 参数设置 flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
print(flights.head())
# 加载数据
sns.heatmap(flights,
annot = True, # 是否显示数值
fmt = 'd', # 格式化字符串
linewidths = 0.2, # 格子边线宽度
#center = 100, # 调色盘的色彩中心值,若没有指定,则以cmap为主
#cmap = 'Reds', # 设置调色盘
cbar = True, # 是否显示图例色带
#cbar_kws={"orientation": "horizontal"}, # 是否横向显示图例色带
#square = True, # 是否正方形显示图表
)
flights.head()

# 2、热图 - heatmap()   绘制半边热图

sns.set(style="white")
# 设置风格 rs = np.random.RandomState(33)
d = pd.DataFrame(rs.normal(size=(100, 26)))
corr = d.corr() #26*26的一个正方数据; # 求解相关性矩阵表格
# 创建数据
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# 设置一个“上三角形”蒙版 cmap = sns.diverging_palette(220, 10, as_cmap=True)
# 设置调色盘 sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=0.2)
# 生成半边热图

Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图的更多相关文章

  1. 基于echarts 24种数据可视化展示,填充数据就可用,动手能力强的还可以DIY(演示地址+下载地址)

    前言 我们先跟随百度百科了解一下什么是"数据可视化 [1]". 数据可视化,是关于数据视觉表现形式的科学技术研究. 其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来 ...

  2. Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)

    1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...

  3. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  4. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  5. Python数据可视化编程实战——导入数据

    1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过 ...

  6. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  7. Python 绘图与可视化 seaborn

    Seaborn是一个基于matplotlib的Python数据可视化库.它提供了一个高级界面,用于绘制有吸引力且信息丰富的统计图形. 主页:http://seaborn.pydata.org/ 官方教 ...

  8. 第二篇:Power BI数据可视化之基于Web数据的报表制作(经典级示例)

    前言 报表制作流程的第一步显然是从各个数据源导入数据,Power BI能从很多种数据源导入数据:如Excel,CSV,XML,以及各类数据库(SQL Server,Oracle,My SQL等),两大 ...

  9. JavaScript数据可视化编程学习(二)Flotr2,雷达图

    一.雷达图 使用雷达图显示多维数据. 如果你有多维的数据要展示,那么雷达图就是一种非常有效的可视化方法. 由于雷达图不常用,比较陌生,所以向用户解释的时候有一些难度.注意使用雷达图会增加用户认知负担. ...

随机推荐

  1. Ex 7_21 在一个流网络中,一条边被称为是临界的...第十三次作业

    如果原图中的一条边e(u,v)是临界边,则在求解最大流的过程中这条边的流量将会被占满,即在残量图中只存在反向边e(v,u),不存在正向边e(u,v).但是残量图中并不是所有的只存在反向边的顶点对之间的 ...

  2. 单点登录SSO的原理及实现方式总结

      核心思想   用户信息的集中存储(全局Cooike.集中式Session.Json Web Token.Redis缓存服务器.自定义SSO服务器)   认证(Filter中执行)   登出(不同站 ...

  3. jquery中的attr与prop的区别,什么时候用attr,什么时候用prop

    只要有 Boolean() 属性的,简单说就是具有true 和 false 两个属性的属性,如 checked, selected 或者 disabled 使用prop(),(其实这些都是表单类的), ...

  4. Linux编程学习笔记(一)

    Linux的发展趋势势在必行,国内的服务器的操作系统Linux占到主导地位,不光是操作系统,还有嵌入式系统. 1. 今天就Linux的其中一个版本做一介绍,如下是Centos的版本之间的区别. ins ...

  5. Java 画一个5X5的方形矩阵

    效果图如下: 思路:创建一个窗口,使其居中于屏幕中央,使用drawRect(x, y, width, height)画正方形. import java.awt.Graphics; import jav ...

  6. Cookie中设置了 HttpOnly,Secure 属性,有效的防止XSS攻击,X-Frame-Options 响应头避免点击劫持

    属性介绍: 1) secure属性当设置为true时,表示创建的 Cookie 会被以安全的形式向服务器传输(ssl),即 只能在 HTTPS 连接中被浏览器传递到服务器端进行会话验证, 如果是 HT ...

  7. map reduce程序示例

    map reduce程序示例 package test2; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop. ...

  8. sqlserver text类型字段错误 net.sourceforge.jtds.jdbc.ClobImpl@66fa192的解决方法

    1. SqlServer数据库中text/ntext字段,在用jtds1.2驱动时,会出现用getString()取不到值的问题,toString()也不行. 昨天查了下帮助可以通过简单的配置解决.即 ...

  9. Ubuntu点击dash home就崩溃

    很崩溃的一个问题,搞了好久.并没有很清楚的知道具体哪个细节导致的问题,只是大概知道了原因,以及搞出了一个解决方案. 问题描述 台式机,没有独立显卡,也就是只有一个intel CPU在一起的小破显卡(我 ...

  10. .Net(C#)用正则表达式清除HTML标签(包括script和style),保留纯本文(UEdit中编写的内容上传到数据库)

    去官网下载,本Demo用的MVC模式 下载地址:http://ueditor.baidu.com/website/download.html 加入文件夹中的结构: 引入了函数公式的图标: @{ Vie ...