传送门

参考资料:

  [1]:挑战程序设计竞赛

题意

  柱状图是由一些宽度相等的长方形下端对齐后横向排列得到的图形。

  现在有由 n 个宽度为1,高度分别为h[1,2,3.......n]的长方形从左到右依次排列组成的柱状图。

  问里面包含的长方形的最大面积是多少?

题解

  如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{h[i] | L <= i <= R}。

  这样我们就得到了一个O(N3)的算法,如果对计算区间最小值进行一些优化,那么可以把复杂度将为O(N^2)。

  但即使是这样,仍然无法在规定时间内求出答案。那么我们应该怎么做才能更高效的求解呢?

  设面积最大的长方形左端是L,右端是R,高度是H。

  易得H[L-1] < H 且 H[R+1] < H ,H=min{h[ i ] | L <= i <= R} 。

  证明:

    如果H[L-1] >= H ,那么左端点就可以更新为L-1,从而可以得到更大的长方形,与假设矛盾,因此 H[L-1] < H;

  同理可得 H[R+1] < H。

  我们可以遍历一边,找到每个 i (i=1,2,3,......,n) 的最小的L[ i ]和最大的R[ i ];

  这样答案就是 max( h[i]*(R[i]-L[i]+1) ) (i=1,2,3,.........,n)。

  关键就是如何在线性时间内求出每个 i 的 L[ i ]和R[ i ]。

  由 H[L-1] < H && H[R+1] < H 可得:

  L[i]=( i 之前的高度第一个小于 h[i] 对应的下标) + 1;

  R[i]=( i 之后的高度第一个小于 h[i] 对应的下标) - 1;

  暴力方法当然是对于每个 i 都遍历一边 i 之前的值和 i 之后的值,这当然是会超时的,所以,我们要换个思路。

  引入一个新的数据结构栈;

  在计算 L[ i ] 时,首先,判断栈顶元素 j 的高度 h[ j ] 是否大于等于 h[ i ];

  如果h[ j ] ≥ h[ i ],则不断弹出栈顶元素,直到 h[ j ] < h[ i ] 或栈为空。

  若栈为空,则L[ i ] = 1,反之,L[ i ]=j+1,然后将 i 压入栈中。

  计算 R[ i ] 时只需反向( i 从n 到 1 )重复上述过程即可。

  由于栈的压入和弹出操作都是 O(N),因此整个算法的时间复杂度为 O(N);

•Code

 #include<iostream>
#include<cstdio>
#include<stack>
using namespace std;
#define ll long long
const int maxn=1e5+; int n;
ll h[maxn];
int l[maxn];
int r[maxn];
stack<int >sta; void Clear()
{
while(!sta.empty())
sta.pop();
}
ll Solve()
{
Clear();
for(int i=;i <= n;++i)
{
while(!sta.empty() && h[sta.top()] >= h[i])
sta.pop(); l[i]=sta.empty() ? :sta.top()+;
sta.push(i);
} Clear();
for(int i=n;i >= ;--i)
{
while(!sta.empty() && h[sta.top()] >= h[i])
sta.pop(); r[i]=sta.empty() ? n:sta.top()-;
sta.push(i);
} ll ans=;
for(int i=;i <= n;++i)
ans=max(ans,h[i]*(r[i]-l[i]+)); return ans;
}
int main()
{
while(~scanf("%d",&n) && n)
{
for(int i=;i <= n;++i)
scanf("%lld",h+i); printf("%lld\n",Solve());
}
return ;
}

poj 2559(栈的应用)的更多相关文章

  1. [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)

    [POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...

  2. poj 2559 Largest Rectangle in a Histogram 栈

    // poj 2559 Largest Rectangle in a Histogram 栈 // // n个矩形排在一块,不同的高度,让你求最大的矩形的面积(矩形紧挨在一起) // // 这道题用的 ...

  3. stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram

    题目传送门 /* 题意:宽度为1,高度不等,求最大矩形面积 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极 ...

  4. POJ 2559 Program C

    Submit Status Practice POJ 2559 Description A histogram is a polygon composed of a sequence of recta ...

  5. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  6. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    [题目链接] http://poj.org/problem?id=2559 [题目大意] 给出一些宽度为1的长方形下段对其后横向排列得到的图形,现在给你他们的高度, 求里面包含的最大长方形的面积 [题 ...

  7. 题解 POJ 2559【Largest Rectangle in a Histogram】(单调栈)

    题目链接:http://poj.org/problem?id=2559 思路:单调栈 什么是单调栈? 单调栈,顾名思义,就是单调的栈,也就是占中存的东西永远是单调(也就是递增或递减)的 如何实现一个单 ...

  8. POJ 2559 Largest Rectangle in a Histogram(单调栈) && 单调栈

    嗯... 题目链接:http://poj.org/problem?id=2559 一.单调栈: 1.性质: 单调栈是一种特殊的栈,特殊之处在于栈内的元素都保持一个单调性,可能为单调递增,也可能为单调递 ...

  9. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

随机推荐

  1. python之读取和写入csv文件

    写入csv文件源码: #输出数据写入CSV文件 import csv data = [ ("Mike", "male", 24), ("Lee&quo ...

  2. Python——Button参数

    anchor:   指定按钮上文本的位置:  background(bg): 指定按钮的背景色:  bitmap:指定按钮上显示的位图:  borderwidth(bd): 指定按钮边框的宽度:  c ...

  3. HDU1800 字典树写法

    题意:高级魔法师可以教低级魔法师 魔法扫把技能,同时教会了的低级魔法师又可以教比他更低级是,是传递的关系 同时如果教会了的话,他们可以同时坐一个扫把 问最少需要多少个扫把 思路:就是判断相同的数字最多 ...

  4. 「Splay」区间翻转

    传送门:>Here< 解法分析 用splay来维护这个序列. 一直没有搞明白的是,这里的splay的节点究竟维护的是什么?是权值吗?肯定不是,因为区间是会翻转的,如果维护权值的话很快平衡树 ...

  5. ConnectionAbortedError: [WinError 10053] 您的主机中的软件中止了一个已建立的连接

    socket服务端在接收socket客户端时抛出异常 ConnectionAbortedError: [WinError 10053] 您的主机中的软件中止了一个已建立的连接. socket服务端代码 ...

  6. bzoj 2957 楼房重建 (线段树+思路)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对 ...

  7. SpringMVC的缓存对静态资源的影响 304 Not Modified

    我们知道在springmvc的配置中,可以添加缓存,但是缓存到底对静态资源有什么影响? 测试 没有添加缓存 <mvc:resources mapping="/image/**" ...

  8. NOIP2013花匠(波动序列)

    波动序列的定义不用多说,下面给出波动序列的求法. #include<iostream> #include<cstdio> #define N 100002 using name ...

  9. selenium 代理设置

    设置Firefox代理: from selenium import webdriver from selenium.webdriver.common.proxy import Proxy, Proxy ...

  10. LVS搭建负载均衡(二)DR模型

    应用场景:LVS配置负载均衡方式之一:dr 测试环境: 配置步骤: 1. 在主机lvs上安装ipvsadm ~]# yum install ipvsadm -y ~]# ipvsadm //启动:该命 ...