【CF1119E】Pavel and Triangles
题目大意:有 N 种长度的边,第 i 种长度为 \(2^i\),给定一些数量的这些边,问最多可以组合出多少种三角形。
题解:应该是用贪心求解,不过选择什么样的贪心策略很关键。
首先分析可知,两个较大边和一个较小边可以组合出三角形,但是反过来不行。从后往前考虑,记录到目前为止有多少对边,若当前边为奇数,考虑是否有足够的对来匹配,若没有,则一定失配,最后计算答案即可。
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/
const int maxn=3e5+10;
int n;
ll a[maxn];
void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
}
void solve(){
ll ans=0,p=0;
for(int i=n;i>=1;i--){
p+=a[i]/2;
if(a[i]%2==1&&p>0)--p,++ans;
}
ans+=p/3*2;
if(p%3==2)++ans;
printf("%lld\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【CF1119E】Pavel and Triangles的更多相关文章
- 【洛谷 P1216】【IOI1994】【USACO1.5】数字三角形 Number Triangles
(如此多的标签qaq) 数字三角形 Number Triangles[传送门] 本来打算当DP练的,没想到写着写着成递推了(汗) 好的没有时间了,我们附个ac代码(改天不写): #include< ...
- 【25.33%】【codeforces 552D】Vanya and Triangles
time limit per test4 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【codeforces 760C】Pavel and barbecue
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【CF528E】Triangles 3000(计算几何)
[CF528E]Triangles 3000(计算几何) 题面 CF 平面上有若干条直线,保证不平行,不会三线共点. 求任选三条直线出来围出的三角形的面积的期望. 题解 如果一定考虑直接计算这个三角形 ...
- 【计算几何】FZU Problem 2270 Two Triangles
http://acm.fzu.edu.cn/problem.php?pid=2270 [题意] 给定6到10个点,从中选出6个不同的点组成两个三角形,使其中一个三角形可以通过另一个三角形平移和旋转得到 ...
- 【OpenGL】第二篇 Hello OpenGL
---------------------------------------------------------------------------------------------------- ...
- WEBGL学习【八】模型视图投影矩阵
<!--探讨WEBGL中不同图形的绘制方法:[待测试2017.11.6]--> <!DOCTYPE HTML> <html lang="en"> ...
- 【37%】【poj1436】Horizontally Visible Segments
Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5200 Accepted: 1903 Description There ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
随机推荐
- Linux上的一些基本常用命令
上传下载文件:// 首先安装lrzsz # yum -y install lrzsz // 上传文件,执行命令rz,会跳出文件选择窗口,选择好文件,点击确认即可.# rz // 下载文件,执行命令sz ...
- 机顶盒webview开发调试
安装node的anywhere插件 启动本地服务器后 使用chrome的DevTool-----> chrome://inspect/#devices 点击inspect 第一次需要FQ ...
- ansible的playbook简单使用
一.介绍 playbook就是一个用yaml语法把多个模块堆起来的一个文件 核心组件: Hosts:执行的远程主机列表Tasks:任务,由模块定义的操作的列表:Varniables:内置变量或自定义变 ...
- 不使用DataContext直接将ViewModels绑定到ItemsControl控件
在常规的MVVM设计模式中,都是通过DataContext将ViewModels的一个对象绑定到View的DataContext中,从而完成相应地绑定,在本文中我们将通过另外的一种思路来将ViewMo ...
- for 循环增强
package cn.zhou.com; /* * 增强for循环 * * for(int i:arr) * { * System.out.print(i+1+" "); * } ...
- 三、Docker网络
一.查看8001端口是否开启处监听状态 netstat -apnl | grep 8001 二.使用brctl show可以看到虚拟机的网络关系 brctl show docker每新建一个conta ...
- CUDA开发
CUB库 https://nvlabs.github.io/cub/index.html
- SpringMVC 复杂对象数据绑定
表单在 web 页面上无处不在,有些表单可能很复杂,大部分表单里的输入项都会对应后端对象属性.SpringMVC 可以自动将表单值绑定到对象上!而且能绑定很复杂的对象!!这里就不写那些基本的表单绑定了 ...
- BZOJ4003[JLOI2015]城池攻占——可并堆
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, 其中 fi ...
- 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...