John M. Lee is a famous mathematician, who bears the reputation of writing the classical book "Introduction to Smooth Manifolds". In his article, "Some Remarks on Writing Mathematical Proofs", he gives us concrete and complete suggestions about how to write mathematical proofs in a concise and unambiguous way. In my opinion, most of them are quite pertinent and enlightening. In the following, I'll list some key points from this article and some comments are also appended.

  • Identify your audience: know your audience is and what they already know.

    Comment: this is very important! For audience at the beginner level, explanations should include minute details, which are similar to the annotations in a traditional Chinese book and usually their text length largely exceeds the original text. Don't be afraid that the explanations may look naive and trivial in the eyes of expert. Actual examples are also recommended to be provided. Vivid illustrations are quite helpful for the ease of understanding. For professional mathematicians, the writing should presented in a rather formal and abstract way for the purpose of clarity and brevity. We should use well-defined and unambiguous mathematical symbols to describe facts by starting from definitions, then lemmas, theorems etc. and gradually unfolding the complete logical network.

  • Write in paragraph form
  • Avoid most abbreviations like "s.t.", "w.r.t", etc. However, "e.g." and "i.e." are still acceptable.

    They are suitable for handwritten in a notebook or on a blackboard, but not suitable for a formal mathematical writing.

  • State what you're proving, i.e. restate the theorem to be proved in a formal way before the proof starts.
  • Label your theorems by using the following keywords (generally speaking, they all mean the same thing, that is a mathematical statement to be proved from assumptions and previously proved results):
    • Theorem: an important proposition.
    • Proposition: a result that is interesting in its own right, but not as important as a theorem.
    • Lemma: a result that might not be interesting in itself, but is useful for proving another theorem.
    • Corollary: a result that follows easily from some theorem, usually the immediately preceding one.

    For handwritten mathematics, underline these keywords with an emphasizing effect.

  • Show where your proofs begin and end

    The proofs start with Proof and end with \(\Box\). In \(\LaTeX\), this is done automatically by various predefined mathematical environments. Handwritten mathematics should also follow the same convention.

  • Why is it true?

    Every mathematical statement in a proof must be justified in one or more of the following six ways:

    • by an axiom;
    • by a previously proved theorem;
    • by a definition;
    • by a hypothesis (including an inductive hypothesis or an assumption for the sake of contradiction);
    • by a previous step in the current proof;
    • by the rules or logic.

    Comment: we can see the logical rigorousness in mathematical proofs.

  • Include more than just the logic

    Mathematical proofs are not simply stacking formulas. The formulas should be concatenated by meaningful and logical descriptions.

  • Include the right amount of detail

    Knowing the audience is a precondition.

  • Writing mathematical formulas
    • Every mathematical symbol or formula should have a definite grammatical function as part of a sentence. Therefore, if they end a sentence or a clause, a punctuation mark must be followed.

      Read aloud each sentence is a good way to check.

    • Do not begin a sentence in a paragraph with a mathematical symbol. For example, "\(l\) and \(m\) are parallel lines" is not good, write "The lines \(l\) and \(m\) are parallel" instead.
    • Avoid writing two in-line formulas separated only by a comma or other punctuation mark. For example, "If \(x \neq 0\), \(x^2>0\)" is not good, write "If \(x \neq 0\), then \(x^2>0\) instead.
    • Do not connect words with symbols. For example, "If \(x\) is an function \(\in X\)" is not good.
    • Symbols for logical terms like \(\exists\) (there exists), \(\forall\) (for all), \(\wedge\) (and), \(\vee\) (or), \(\neg\) (not), \(\Rightarrow\) (implies), \(\Leftrightarrow\) (if and only if), \(\ni\) (such that), \(\because\) (because) and \(\therefore\) (therefore) should only be used in handwritten mathematics. In formal mathematical writing, they should be replaced with English words.

      Exception: \(\Rightarrow\) and \(\Leftrightarrow\) can be used to connect complete symbolic statements. For example:

      We will prove that \((a) \Leftrightarrow (b)\).

Note for "Some Remarks on Writing Mathematical Proofs"的更多相关文章

  1. Greedy is Good

    作者:supernova 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=greedyAlg Joh ...

  2. 【转发】Html5 File Upload with Progress

    Html5 File Upload with Progress               Posted by Shiv Kumar on 25th September, 2010Senior Sof ...

  3. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  4. Mathematics for Computer Graphics

    Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...

  5. matplotlib 入门之Sample plots in Matplotlib

    文章目录 Line Plot One figure, a set of subplots Image 展示图片 展示二元正态分布 A sample image Interpolating images ...

  6. [转] h5上传视频或文件编写

    Html5 finally solves an age old problem of being able to upload files while also showing the upload ...

  7. Pyplot tutorial,Pyplot官方教程自翻译

      matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB ...

  8. [转]Extending the User Interface in Outlook 2010

    本文转自:https://msdn.microsoft.com/en-us/library/office/ee692172%28v=office.14%29.aspx#OfficeOLExtendin ...

  9. 为什么深度神经网络难以训练Why are deep neural networks hard to train?

    Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...

随机推荐

  1. Centos下配置php环境

    Centos下配置php环境   目录[-] 环境: GD2 2 安装PHP 5.2.14(FastCGI模式) 1)编译安装PHP 5.2.14所需的支持库: 2)编译安装MySQL 5.5.3-m ...

  2. xargs命令的使用

    xargs命令是给其他命令传递参数的一个过滤器,也是组合多个命令的一个工具. 它擅长将标准输入数据转换成命令行参数,xargs能够处理管道或者stdin并将其转换成特定命令的命令参数. xargs也可 ...

  3. 专题:DP杂题1

    A POJ 1018 Communication System B POJ 1050 To the Max C POJ 1083 Moving Tables D POJ 1125 Stockbroke ...

  4. Mudo C++网络库第三章学习笔记

    多线程服务器的适用场合与常用编程模型 进程间通信与线程同步; 以最简单规范的方式开发功能正确.线程安全的多线程程序; 多线程服务器是指运行在linux操作系统上的独占式网络应用程序; 不考虑分布式存储 ...

  5. C++面向对象的特点

    C++面向对象的特点 面向对象的特点主要有: 封装, 继承, 多态; 现在自己的简单理解如下, 但要明白具体怎么实现, 背后的原理是什么? 什么是封装, C++怎么实现封装 封装的大致可以分为: 函数 ...

  6. Unity3D游戏开发框架-资源管理类ResourceManage

    新建文件夹:ResMgr.接着新建三个C#脚本.代码如下: IResLoadListener.cs AssetInfo.cs ResMgr.cs using UnityEngine; using Sy ...

  7. Oracle服务器定位CPU使用率高的瓶颈(SQL)

    1.首先用TOP命令监控系统资源,如果是AIX系统,就用topas,进入TOP命令的滚动刷新数据时,发现userCPU高达98%!! 保持top的状态下,按shift+p,可以将所有进程按CPU使用率 ...

  8. atom 的使用插件

    emmet # html补全minimap # 源码预览图linter # 语法检查file-icons # 文件图标docblockr # 注释块autoclose-html # 自动闭合html标 ...

  9. Scientific Toolworks Understand

    Scientific Toolworks Understand是一款定位于代码阅读的软件.界面用Qt开发的. 软件特性: 1.支持多语言:Ada, C, C++, C#, Java, FORTRAN, ...

  10. 【原创】大数据基础之Kerberos(1)简介、安装、使用

    kerberos5-1.17 官方:https://kerberos.org/ 一 简介 The Kerberos protocol is designed to provide reliable a ...