HDU 1695 GCD (莫比乌斯反演模板)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17212 Accepted Submission(s): 6637
Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
题解:
题意是求满足1<=x<=b和1<=y<=d的gcd(x,y)=k的(x,y)有多少对,可以转化为求1<=x<=b/k和1<=y<=d/k的gcd(x,y)=1的(x,y)有多少对,可以用到莫比乌斯反演解决,证明链接https://blog.csdn.net/outer_form/article/details/50588307
这里运用到第二个式子:
为满足
且
和
的
的对数
为满足
且
和
的
的对数
那么,一个数对x,y要满足它们的gcd是i的倍数,则x和y中都必须包含i这个因子,所以F(i)=⌊N/i⌋·⌊M/i⌋。所以反演后得到
所以得到 ,因为要去重,所以后面再减去(1,b)区间的(x,y)对数的一半;
#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll mu[100007],prime[100007];
bool mark[100007];
void getmu()
{
mu[1]=1;
ll cnt=0;
for(ll i=2;i<100007;i++){
if(!mark[i]){
prime[cnt++]=(ll)i;
mu[i]=-1;
}
for(ll j=0;j<cnt&&i*prime[j]<100007;j++){
mark[i*prime[j]]=1;
if(i%prime[j]){
mu[i*prime[j]]=-mu[i];
}else{
mu[i*prime[j]]=0;
break;
}
}
}
}
int main()
{
int T;
ll a,b,c,d,k,ans1,ans2;
getmu();
scanf("%d",&T);
for(int ca=1;ca<=T;ca++){
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
printf("Case %d: ",ca);
if(!k){printf("0\n");continue;}
b/=k,d/=k;
if(b>d) swap(b,d);
ans1=ans2=0;
for(ll i=1;i<=b;i++)
ans1+=mu[i]*(b/i)*(d/i);
for(ll i=1;i<=b;i++)
ans2+=mu[i]*(b/i)*(b/i);
printf("%lld\n",ans1-ans2/2);
}
return 0;
}
HDU 1695 GCD (莫比乌斯反演模板)的更多相关文章
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- hdu 1695 GCD 莫比乌斯
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
- hdu1695(莫比乌斯反演模板)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b], y 属于 [c, ...
随机推荐
- C++以const 作为返回值类型的意义
const rational operator*(const rational& lhs, const rational& rhs); 很多程序员第一眼看到它会纳闷:为什么operat ...
- 使用WireMock快速伪造RESTful服务
⒈下载WireMock独立运行程序 http://wiremock.org/docs/running-standalone/ ⒉运行 java -jar wiremock-standalone-2.2 ...
- eMMC基础技术11:flash memory
[转]http://www.wowotech.net/basic_tech/367.html 0.前言 eMMC 是 Flash Memory 的一类,在详细介绍 eMMC 之前,先简单介绍一下 Fl ...
- vue2+axios在不同的环境打包不同的接口地址
node.js的环境变量 process process 对象是一个 global (全局变量),提供有关信息,控制当前 Node.js 进程.作为一个对象,它对于 Node.js 应用程序始终是可用 ...
- linux系统快捷键
tab 补全命令 两次tab 列出所有以字符前缀开头的命令 ctrl A 把光标移到命令行开头 ctrl E 把光标移到命令行结尾 ctrl C 强制终止当前的命令 ct ...
- pl sql 中文乱码
一:查看oracle数据库的字符集编码: select * fromnls_database_parameters where parameter in ('NLS_LANGUAGE', 'NLS_T ...
- 微信小程序-动态设置背景色navigationBarBackgroundColor的值
查看API: wx.setNavigationBarColor(OBJECT) 代码: wx.setNavigationBarColor({ frontColor: '#ffffff', // 必写项 ...
- canvas - 简单画板
截图: Demo:Demo 上代码:. <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- 【原创】运维基础之Docker(6)性能
The general result is that Docker is nearly identical to Native performance and faster than KVM in e ...
- MinGW-w64非官方编译器集成安装包(很清楚)
官方链接[编辑] MinGW 官方网站. SourceForge.net上的MinGW官方的下载站点(Win32系统). MinGW-w64官方的下载站点[编辑] MinGW-w64是2005年由On ...