python---通过递归和动态规划策略解决找零钱问题
也是常见套路。
# coding = utf-8 def rec_mc(coin_value_list, change, know_results): min_coins = change if change in coin_value_list: know_results[change] = 1 return 1 elif know_results[change] > 0: return know_results[change] else: for i in [c for c in coin_value_list if c <= change]: num_coins = 1 + rec_mc(coin_value_list, change-i, know_results) if num_coins < min_coins: min_coins = num_coins know_results[change] = min_coins return min_coins print("===========递归实现========================") print(rec_mc([1, 5, 10, 25], 63, [0]*64)) def dp_make_change(coin_value_list, change, min_coins, coins_used): for cents in range(change+1): coin_count = cents new_coin = 1 for j in [c for c in coin_value_list if c <= cents]: if min_coins[cents-j] + 1 < coin_count: coin_count = min_coins[cents-j]+1 new_coin = j min_coins[cents] = coin_count coins_used[cents] = new_coin return min_coins[change] def print_coins(coins_used, change): coin = change while coin > 0: this_coin = coins_used[coin] print(this_coin) coin = coin - this_coin a_mnt = 63 c_list = [1, 5, 10, 21, 25] c_used = [0] * (a_mnt+1) c_count = [0] * (a_mnt+1) print("===========动态规划实现========================") print('Making change for ', a_mnt, 'requires') print(dp_make_change(c_list, a_mnt, c_count, c_used), 'coins') print("They are: ") print_coins(c_used, a_mnt) print("The used list is as follows: ") print(c_used)
输出:
D:\cheng\test\Scripts\python.exe tests.py ===========递归实现======================== 6 ===========动态规划实现======================== Making change for 63 requires 3 coins They are: 21 21 21 The used list is as follows: [1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 1, 1, 5, 1, 1, 1, 1, 10, 21, 1, 1, 1, 25, 1, 1, 1, 1, 5, 10, 1, 1, 1, 10, 1, 1, 1, 1, 5, 10, 21, 1, 1, 10, 21, 1, 1, 1, 25, 1, 10, 1, 1, 5, 10, 1, 1, 1, 10, 1, 10, 21] Process finished with exit code 0
python---通过递归和动态规划策略解决找零钱问题的更多相关文章
- 算法 递归 迭代 动态规划 斐波那契数列 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 五大常见算法策略之——动态规划策略(Dynamic Programming)
Dynamic Programming Dynamic Programming是五大常用算法策略之一,简称DP,译作中文是"动态规划",可就是这个听起来高大上的翻译坑苦了无数人 ...
- 70. Climbing Stairs【leetcode】递归,动态规划,java,算法
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- Python学到什么程度就可以去找工作?掌握这4点足够了!
大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...
- 转:python idle 清屏问题的解决
http://www.cnblogs.com/maybego/p/3234055.html python idle 清屏问题的解决 在学习和使用python的过程中,少不了要与python idle打 ...
- Python的递归
递归 是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现象.在计算机编程里,递归指的是一个过程:函数不断引用自身,直到引用的对象已知.使用递归解决问题,思路清晰,代码少.但是在主流高 ...
- 递归与分治策略之循环赛日程表Java实现
递归与分治策略之循环赛日程表 一.问题描述 设有n=2^k个运动员要进行网球循环赛.现要设计一个满足以下要求的比赛日程表: (1)每个选手必须与其他n-1个选手各赛一次: (2)每个选手一天只能参赛一 ...
- 你想找的Python资料这里全都有!没有你找不到!史上最全资料合集
你想找的Python资料这里全都有!没有你找不到!史上最全资料合集 2017年11月15日 13:48:53 技术小百科 阅读数:1931 GitHub 上有一个 Awesome - XXX 系列 ...
- 动态规划--找零钱 coin change
来自http://www.geeksforgeeks.org/dynamic-programming-set-7-coin-change/ 对于整数N,找出N的所有零钱的表示.零钱可以用S={s1,s ...
随机推荐
- (转载)深度学习的weight initialization
本文转自:谷歌工程师:聊一聊深度学习的weight initialization TLDR (or the take-away) Weight Initialization matters!!! 深度 ...
- python3-面向对象进阶(内置方法)
面向对象进阶: isinstance和issubclass 反射 __setattr__,__getattr,__delattr__ __setitem__,__getitem,__delitem__ ...
- css3实现不同进度条
进度条类型1(渐变进度条) 效果1:图片实现进度条 思路,进度条是一张图片,用定位来控制不同时间图片相对进度条box的left值来控制位置,用animate实现动画效果 html <div cl ...
- win7经常出现“关闭xxxx前您必须关闭所有会话框”
这可能是windows的一个BUG,在没有关闭输入法的状态下它不默认你关闭了所有窗口,只要把输入法切换回默认的英文输入法就可以正常关闭了
- 关于flock
昨天在研究dropbear实现时,看到初始化脚本/etc/init.d/dropbear中有关于文件锁lock的内容,如下: lock /tmp/.switch2jffs mkdir -p /e ...
- mybatis打印SQL日志
在配置的log4j输出时,不能打印SQL信息,在mybatis-config.xml中添加如下配置即可 <settings> <setting name="logImpl& ...
- python bytes/str
http://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3/
- Ex 2_22 两个有序列表合并后的第k小元素..._第四次作业
package org.xiu68.ch02; public class Ex2_22 { public static void main(String[] args) { // TODO Auto- ...
- [转]Fiddler模拟post四种请求数据
1 前言 仅作为记录使用. 2 内容 post请求主体详解: 对于get请求来说没有请求主体entity-body.对于post请求而言,不会对发送请求的数据格式进行限制,理论上你可以发任意数据,但是 ...
- 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]
传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...