[HDU2065] "红色病毒"问题
传送门:>Here<
题意:现在有一长度为N的字符串,满足一下条件:
(1) 字符串仅由A,B,C,D四个字母组成;
(2) A出现偶数次(也可以不出现);
(3) C出现偶数次(也可以不出现);
计算满足条件的字符串个数.
解题思路
先解普通递推,然后矩阵乘法优化即可。一维好像没有什么好的解法……
$f[i][0]$表示长度为$i$的合法字符串的数量,$f[i][1]$表示仅A的个数为奇数的字符串数量,$f[i][2]$表示仅C的个数为奇数的字符串数量,$f[i][3]$表示A, C个数都为奇数的字符串数量
因此可得递推方程$$f[i][0] = f[i-1][0]*2 + f[i-1][1] + f[i-1][2]$$
这个方程的意义在于:考虑第$i$位相比已知的前$i-1$位加入什么。如果加入B或D,那么前面的必须合法。如果加入A或C,那么相应的前面的A或C的数量应当为奇数
问题一:为什么只考虑最后一位,当前这一位理论上不是插入前面的i-1个位置都可以吗?然而在这里是要考虑重复的,例如串$\{ AAB\}$,在最后一位或是倒数第二位插入B都将会得到$\{ AABB \}$。那前面的几位呢?如果在第二位插入,就变成了$\{ ABAB \}$,而这等同于在$\{ ABA \}$的后面插入了$B$,将归属于另一种情况。如果讨论了它,就会与别的情况有重复。总结起来,最后得到的串是不分插入位置的,不同的插入顺序得到的是同一个串。换句话说也就是所有B都是一样的。
问题二:为什么转移$f[i][0]$时不加上$f[i-2][3]$呢?试想倘若$f[i-2][3]$的末尾加上一个A,那么就会变成$f[i-1][2]$;加上C就会变成$f[i-1][1]$。而这两类都讨论过了,再讨论就重复了。
其他的几个的转移方法类似,最后我们得到转移方程组:$$\left\{\begin{matrix}f[i][0] = f[i-1][0]*2+f[i-1][1]+f[i-1][2]\\ f[i][1] = f[i-1][1]*2+f[i-1][0]+f[i-1][3]\\ f[i][2] = f[i-1][2]*2+f[i-1][0]+f[i-1][3]\\ f[i][3] = f[i-1][3]*2+f[i-1][1]+f[i-1][2]\\ \end{matrix}\right.$$
因此可以推得矩阵$$ \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2\end{bmatrix} $$
Code
不知道为什么反正要开longlong
/*By DennyQi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int long long
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
int T,N;
int a[][],b[][],ans[][];
inline void Matrix_KSM(int y){
while(y > ){
if(y & ){
for(int i = ; i <= ; ++i){
for(int j = ; j <= ; ++j){
b[i][j] = ;
for(int k = ; k <= ; ++k){
b[i][j] = (b[i][j] + ans[i][k] * a[k][j]) % ;
}
}
}
for(int i = ; i <= ; ++i){
for(int j = ; j <= ; ++j){
ans[i][j] = b[i][j];
}
}
}
for(int i = ; i <= ; ++i){
for(int j = ; j <= ; ++j){
b[i][j] = ;
for(int k = ; k <= ; ++k){
b[i][j] = (b[i][j] + a[i][k] * a[k][j]) % ;
}
}
}
for(int i = ; i <= ; ++i){
for(int j = ; j <= ; ++j){
a[i][j] = b[i][j];
}
}
y /= ;
}
}
inline void Solve(){
memset(ans,,sizeof(ans));
memset(a,,sizeof(a));
for(int i = ; i <= ; ++i) ans[i][i] = ;
a[][] = , a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = , a[][] = ;
Matrix_KSM(N-);
printf("%lld\n", (*ans[][]% + ans[][]% + ans[][]) % );
}
#undef int
int main(){
#define int long long
for(;;){
T = r;
if(!T) break;
for(int i = ; i <= T; ++i){
N = r;
printf("Case %lld: ",i);
Solve();
}
puts("");
}
return ;
}
[HDU2065] "红色病毒"问题的更多相关文章
- HDU2065 "红色病毒"问题 【组合数学 二项式定理】
HDU2065 "红色病毒"问题 Description: 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色 ...
- hdu2065"红色病毒"问题(指数母函数+快速幂取模)
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU2065"红色病毒"问题【指数型母函数】
Problem Description 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,该病毒及其 ...
- HDU2065 “红色病毒”问题 (指数型母函数经典板题)
题面 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,该病毒及其变种的DNA的一条单链中,胞嘧啶, ...
- hdu2065 "红色病毒"问题 指数型母函数
关于指数型母函数的题目,通过用公式并展开得到系数做的吧,取最后两位就是对100取模 #include<stdio.h> int QuickPow(int a,long long n,int ...
- 【指数型母函数+非递归快速幂】【HDU2065】"红色病毒"问题
大一上学完数分上后终于可以搞懂指数型母函数了.. 需要一点关于泰勒级数的高数知识 题目在此: "红色病毒"问题 Time Limit: 1000/1000 MS (Java/Oth ...
- HDUOJ-----2065"红色病毒"问题
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 2065 "红色病毒"问题(生成函数)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- HDU 2065 “红色病毒”问题 --指数型母函数
这种有限制的类棋盘着色问题一般可以用指数型母函数来解决,设Hn表示这样的着色数,首先H0=1,则Hn等于四个字母的(A,B,C,D)的多重集合的n排列数,其中每个字母的重数是无穷,且要求A,C出现的次 ...
随机推荐
- shell 读取配置文件的方法
原文地址:http://bbs.chinaunix.net/thread-3628456-1-1.html 总结地址:https://www.cnblogs.com/binbinjx/p/568021 ...
- Leetcode 665. Non-decreasing Array(Easy)
Given an array with n integers, your task is to check if it could become non-decreasing by modifying ...
- iOS 快速集成ijkplayer视频直播与录播框架
最近由于需求的变动,项目内把最初最简单的原生直播框架变成了B站开源的ijkplayer框架,下面把具体的过程总结一下整个过程都比较简单,重要的是理解的过程,集成完毕之后,视频的用户体验比苹果原生好了很 ...
- 多线程系列之三:Immutable 模式
一,什么是Immutable模式?immutable就是不变的,不发生改变的.Immutable模式中存在着确保实例状态不发生变化改变的类.这些实例不需要互斥处理.String就是一个Immutabl ...
- virtualization - Ubuntu Budgie screen distortion in Hyper-V - Ask Ubuntu
virtualization - Ubuntu Budgie screen distortion in Hyper-V - Ask Ubuntuhttps://askubuntu.com/questi ...
- MySQL之优化
当 MySQL 单表记录数过大时,增删改查性能都会急剧下降,本文会提供一些优化参考,大家可以参考以下步骤来优化. 一. 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻 ...
- Nginx三部曲(1)基础
我们会告诉你 Nginx 是如何工作的,其背后的概念有哪些,以及如何优化它以提升应用程序的性能.还会告诉你如何安装,如何启动.运行. 这个教程包括三节: 基础概念——你可以了解命令(directive ...
- [转帖]中关村:LED屏幕和OLED屏幕有什么区别?答案在这里
LED屏幕和OLED屏幕有什么区别?答案在这里 中关村在线 01-0810:40 目前的电视市场,更新换代的频率越来越快,无论是国产品牌还是合资品牌,都不约而同的推出了全新产品.这离不开人们对更好 ...
- oracle常用函数案例
--INSTR函数 SELECT INSTR(' HELLO WORLD','H') FROM DUAL; --LTRIM RTRIM函数 SELECT LTRIM('*HELLO=','*') FR ...
- 【学亮开讲】Oracle内外连接查询20181119
--内连接查询 --需求:查询显示业主编号.业主名称.业主类型名称 select os.id 业主编号,os.name 业主名称,ot.name 业主类型名称 from t_owners os,t_o ...