题目链接:

[WC2018]州区划分

题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路。对于一种划分方案,第i个部分的权值为这一部分中所有点的权值和比上前i部分所有点的权值和的p次方,一种划分方案的权值为每部分的权值之积。要求求出所有划分方案的权值之和。

我们设f[S]为选中点的状态集合为S时的答案(其中S为二进制状态),设T为S集合最后一次划分出的集合且要保证集合T合法,那么可以得到转移方程(其中sum代表集合中点权和):

$f[S]=\sum\limits_{T\subseteq S}^{ }f[S-T]*(\frac{sum[T]}{sum[S]})^p$

这个子集DP直接枚举子集的时间复杂度是O(3^n),显然过不去,但我们发现这个DP相当于枚举两个集合i,j满足$i\cap j= \varnothing  ,i\cup j=S$

这个如果只有子集并的条件可以用直接用FWT来优化,但还要求交集为空的条件就不能一维DP优化了。

我们假设一个点能被划分到多个部分中,那么DP状态就变成了二维:f[i][S]表示选取点集合为S,每部分包含的点数和为i的答案。

设g[i][S]表示集合为S,选取点数为i时sum[S]的p次方,如果S不合法或|S|!=i,那么g[i][S]就为0。(其中|S|表示S集合中的点数即二进制状态中1的个数)

那么转移方程就变成了:

$f[i][S]=\sum\limits_{j=1}^{i}\sum\limits_{T\subseteq S}^{ }\frac{f[j][S-T]*g[i-j][T]}{sum[S]^p}$

这样我们对f数组和g数组进行FWT转化成子集和表达式然后DP,每次乘上sum[S]^p的逆元即可,最后的答案为f[|U|][U],其中U为全集。时间复杂度为O(2^n*n^2)。

再来说一下如何判欧拉回路:

这个很简单只要一个图联通且每个点的度数都是偶数,那么这个图就是欧拉回路,对于每个二进制状态预处理判断即可,用bfs或dfs或并查集判断都可以。预处理时间复杂度同样是O(2^n*n^2)。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int f[22][2100000];
int g[22][2100000];
int n,m,p;
const int mod=998244353;
int x[10000];
int y[10000];
int s[30];
int fa[30];
int v[22];
int w[2100000];
int cnt;
int mask;
int lg[2100000];
int inv[2100000];
inline int find(int x)
{
if(fa[x]==x)
{
return x;
}
return fa[x]=find(fa[x]);
}
inline void FWT(int *f,int opt)
{
for(int k=2;k<=(1<<n);k<<=1)
{
for(int i=0,t=k>>1;i<(1<<n);i+=k)
{
for(int j=i;j<i+t;j++)
{
if(opt==1)
{
f[j+t]=(f[j+t]+f[j])%mod;
}
else
{
f[j+t]=(f[j+t]-f[j]+mod)%mod;
}
}
}
}
}
inline int quick_pow(int x,int y)
{
int res=1;
while(y)
{
if(y&1)
{
res=1ll*res*x%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
int main()
{
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x[i],&y[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
}
mask=(1<<n)-1;
for(int i=1;i<=n;i++)
{
lg[1<<(i-1)]=i;
}
for(int i=1;i<=mask;i++)
{
int sum=0;
for(int j=0;j<n;j++)
{
if(i&(1<<j))
{
w[i]+=v[j+1];
sum++;
}
}
int num=sum;
inv[i]=quick_pow(w[i],mod-2);
for(int j=1;j<=n;j++)
{
fa[j]=j;
s[j]=0;
}
for(int j=1;j<=m;j++)
{
if(((1<<(x[j]-1))&i)&&((1<<(y[j]-1))&i))
{
int u=find(x[j]);
int v=find(y[j]);
if(u!=v)
{
sum--;
fa[u]=v;
}
s[x[j]]++;
s[y[j]]++;
}
}
int flag=0;
for(int j=0;j<n;j++)
{
if((1<<j)&i)
{
flag|=(s[j+1]&1);
}
}
if(flag||sum>1)
{
g[num][i]=quick_pow(w[i],p);
}
}
f[0][0]=1;
FWT(f[0],1);
for(int i=0;i<=n;i++)
{
FWT(g[i],1);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
for(int k=0;k<=mask;k++)
{
f[i][k]+=1ll*g[j][k]*f[i-j][k]%mod;
f[i][k]%=mod;
}
}
FWT(f[i],-1);
for(int k=0;k<=mask;k++)
{
f[i][k]=1ll*f[i][k]*quick_pow(inv[k],p)%mod;
}
if(i<n)
{
FWT(f[i],1);
}
}
printf("%d",f[n][mask]);
}

[WC2018]州区划分——FWT+DP+FST的更多相关文章

  1. P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT

    LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...

  2. [WC2018]州区划分(FWT)

    题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...

  3. [WC2018]州区划分(FWT,FST)

    [WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...

  4. [UOJ#348][WC2018]州区划分

    [UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 ...

  5. [WC2018]州区划分

    [WC2018]州区划分 注意审题: 1.有序选择 2.若干个州 3.贡献是州满意度的乘积 枚举最后一个州是哪一个,合法时候贡献sum[s]^p,否则贡献0 存在欧拉回路:每个点都是偶度数,且图连通( ...

  6. [WC2018]州区划分(状压,子集卷积)

    [洛谷题面]https://www.luogu.org/problemnew/show/P4221 首先考虑判定一个子图是否合法: (1)连通:并查集判断即可. (2)没有欧拉回路:存在欧拉回路的条件 ...

  7. Luogu4221 WC2018州区划分(状压dp+FWT)

    合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...

  8. [WC2018]州区划分(状压DP+FWT/FMT)

    很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...

  9. uoj#348/洛谷P4221 [WC2018]州区划分(FWT)

    传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...

随机推荐

  1. 3.sparkSQL整合Hive

    spark SQL经常需要访问Hive metastore,Spark SQL可以通过Hive metastore获取Hive表的元数据.从Spark 1.4.0开始,Spark SQL只需简单的配置 ...

  2. Python-SMTP发送邮件(HTML、图片、附件)

    前言: SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式. 一.Python发送HTML ...

  3. Node 系列之path模块

    //引用该模块 var path = require("path"); 1.路径解析,得到规范化的路径格式 //对window系统,目录分隔为'\', 对于UNIX系统,分隔符为' ...

  4. CF892.B. Wrath

    ---恢复内容开始--- 题意: 有n个犯人,手上都有个长度为Li的武器,当铃响时大家同时挥动武器,只能把前面攻击范围内的敌人杀死,问最后还剩几个人. 题目传送门: [http://codeforce ...

  5. c++入门之运算符重载

    c++函数重载:可以将一个函数名用于不同功能的函数.从而处理不同的对象.对于运算符,同样也有这样的用途,即对同一个标志符的运算符,可以运用到不同的功能中去. 首先引入:运算符重载,在C语言中甚至都有运 ...

  6. Karen and Coffee CodeForces - 816B (差分数组+预处理前缀和)

    To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, want ...

  7. Spring Boot 中使用 @Transactional 注解配置事务管理

    事务管理是应用系统开发中必不可少的一部分.Spring 为事务管理提供了丰富的功能支持.Spring 事务管理分为编程式和声明式的两种方式.编程式事务指的是通过编码方式实现事务:声明式事务基于 AOP ...

  8. 09-babel

    这个是解析我们es6的代码的,为什么要用它呢,因为对于一些ie浏览器,甚至FF浏览器,低版本的还不能识别我们的es6代码,那么vue里面好多还让我们去写es6的代码,这个时候我们就可以用babel这个 ...

  9. node exprss-session 和connect-mongo

    let express = require('express'); let session = require('express-session'); let app = new express(); ...

  10. [转帖]windows+xshell+xming访问非桌面版Linux服务器

    windows+xshell+xming访问非桌面版Linux服务器 2016年06月05日 00:09:11 jxxiaohou 阅读数:11996 标签: Linux 更多 个人分类: Linux ...