Problem Statement

You are given a positive integer N. Find the number of the pairs of integers u and v(0≦u,v≦N) such that there exist two non-negative integers a and b satisfying a xorb=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 10^9+7.

Constraints

  • 1≦N≦10^{18}

Input

The input is given from Standard Input in the following format:

N

Output

Print the number of the possible pairs of integers u and v, modulo 10^9+7.

Sample Input 1

3

Sample Output 1

5

The five possible pairs of u and v are:

  • u=0,v=0 (Let a=0,b=0, then 0 xor 0=00+0=0.)

  • u=0,v=2 (Let a=1,b=1, then 1 xor 1=01+1=2.)

  • u=1,v=1 (Let a=1,b=0, then 1 xor 0=11+0=1.)

  • u=2,v=2 (Let a=2,b=0, then 2 xor 0=22+0=2.)

  • u=3,v=3 (Let a=3,b=0, then 3 xor 0=33+0=3.)

Sample Input 2

1422

Sample Output 2

52277

Sample Input 3

1000000000000000000

Sample Output 3

787014179

思路:
打出前面一些项的答案:
1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329,
可以发现这样的规律:
d

a(2k) = 2*a(k-1) + a(k);
a(2k+1) = 2*a(k) + a(k-1).

然后用数组记录前面一些项目,然后开一个map记录中间递归过程访问过的变量(即,记忆话搜索)

然后直接递归处理上面发现的递归式即可了。

这也是OEIS中的一个数列。

http://oeis.org/A007729

A007729   6th binary partition function.   4
  1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344 (listgraphrefslistenhistorytextinternal format)
  OFFSET

0,2

  COMMENTS

From Gary W. Adamson, Aug 31 2016: (Start)

The sequence is the left-shifted vector of the production matrix M, with lim_{k->inf} M^k. M =

  1, 0, 0, 0, 0, ...

  2, 0, 0, 0, 0, ...

  2, 1, 0, 0, 0, ...

  1, 2, 0, 0, 0, ...

  0, 2, 1, 0, 0, ...

  0, 1, 2, 0, 0, ...

  0, 0, 2, 1, 0, ...

  0, 0, 1, 2, 0, ...

  ...

The sequence is equal to the product of its aerated variant by (1,2,2,1): (1, 2, 2, 1) * (1, 0, 2, 0, 4, 0, 5, 0, 8, ...) = (1, 2, 4, 5, 8, 10, ...).

Term a((2^n) - 1) = A007051: (1, 2, 5, 14, 41, 122, ...). (End)

a(n) is the number of ways to represent 2n (or 2n+1) as a sum e_0 + 2*e_1 + ... + (2^k)*e_k with each e_i in {0,1,2,3,4,5}. - Michael J. Collins, Dec 25 2018

  LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Michael J. Collins, David Wilson, Equivalence of OEIS A007729 and A174868, arXiv:1812.11174 [math.CO], 2018.

B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.

  FORMULA

G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1 + 2x + 2x^2 + x^3 + 0 + 0 + 0 + ...). - Gary W. Adamson, Sep 01 2016

a(2k) = 2*a(k-1) + a(k); a(2k+1) = 2*a(k) + a(k-1). - Michael J. Collins, Dec 25 2018

  MAPLE

b:= proc(n) option remember;

      `if`(n<2, n, `if`(irem(n, 2)=0, b(n/2), b((n-1)/2) +b((n+1)/2)))

    end:

a:= proc(n) option remember;

      b(n+1) +`if`(n>0, a(n-1), 0)

    end:

seq(a(n), n=0..70);  # Alois P. Heinz, Jun 21 2012

  MATHEMATICA

b[n_] := b[n] = If[n<2, n, If[Mod[n, 2] == 0, b[n/2], b[(n-1)/2]+b[(n+1)/2]]]; a[n_] := a[n] = b[n+1] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

  CROSSREFS

A column of A072170.

Cf. A002487A007051.

Apart from an initial zero, coincides with A174868.

Sequence in context: A179509 A157007 A173509 * A174868 A268381 A186349

Adjacent sequences:  A007726 A007727 A007728 * A007730 A007731 A007732

  KEYWORD

nonn

  AUTHOR

N. J. A. Sloane

  EXTENSIONS

More terms from Vladeta Jovovic, May 06 2004

  STATUS

approved

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const ll mod=1e9+7ll;
ll a[]={, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , };
map<ll,ll> m;
ll f(ll k)
{
// cout<<k<<endl;
if(k<=)
{
return a[k];
}
if(m[k])
{
return m[k];
}
if(k&)
{
return m[k]=(2ll*f(k/2ll)%mod+f(k/2ll-1ll)%mod)%mod;
}else
{
return m[k]=(2ll*f(k/2ll-1ll)%mod+f(k/2ll)%mod)%mod;
}
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
ll n;
cin>>n;
cout<<f(n)<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
												

ARC 066D Xor Sum AtCoder - 2272 (打表找规律)的更多相关文章

  1. 【找规律】ARC 066D Xor Sum AtCoder - 2272

    题目大意 给出一个整数\(n\),已知\(0\le u,v\le n\),求满足\(a\ xor\ b=u\)且\(a+b=v\)的\(a.b\)对数 样例1输入 3 样例1输出 5 /* u=0,v ...

  2. HDU 4861 Couple doubi (数论 or 打表找规律)

    Couple doubi 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/D Description DouBiXp has a ...

  3. 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用

    转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html    ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...

  4. HDU 3032 (SG打表找规律)

    题意: 有n堆石子,alice先取,每次可以选择拿走一堆石子中的1~x(该堆石子总数) ,也可以选择将这堆石子分成任意的两堆.alice与bob轮流取,取走最后一个石子的人胜利. 思路: 因为数的范围 ...

  5. OpenJ_POJ C16D Extracurricular Sports 打表找规律

    Extracurricular Sports 题目连接: http://acm.hust.edu.cn/vjudge/contest/122701#problem/D Description As w ...

  6. Codeforces Round #493 (Div. 2)D. Roman Digits 第一道打表找规律题目

    D. Roman Digits time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  7. 【ZOJ】3785 What day is that day? ——KMP 暴力打表找规律

    转自:http://www.cnblogs.com/kevince/p/3887827.html 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这么一说大家心里肯定有数了吧,“不就是nex ...

  8. [国家集训队]整数的lqp拆分 数学推导 打表找规律

    题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...

  9. CF R 633 div 1 1338 C. Perfect Triples 打表找规律

    LINK:Perfect Triples 初看这道题 一脸懵逼.. 完全没有思路 最多就只是发现一点小规律 即. a<b<c. 且b的最大的二进制位一定严格大于a b的最大二进制位一定等于 ...

随机推荐

  1. Sql2012如何将远程服务器数据库及表、表结构、表数据导入本地数据库

    1.第一步,在本地数据库中建一个与服务器同名的数据库 2.第二步,右键源数据库,任务>导出数据,弹出导入导出提示框,点下一步继续 3.远程数据库操作,确认服务器名称(服务器地址).身份验证(输入 ...

  2. VS调式时出现异常,在输入法是中文状态下,输入框输入字母再回车,会造成页面关闭,vs退出调式

    解决方案:关闭浏览器窗口关闭时,停止调试 .就恢复正常,无异常

  3. Ajax入门例子

    在customer.php的文件中,代码如下: <html> <head> <script type="text/javascript"> fu ...

  4. 对讲解OS文献的反思

    前天把OS中Taneubaum写的那篇论文Can We Make Operating Systems Reliable and Secure?给班上的同学讲解了一遍.这篇文献我花了三天的时间才把它弄好 ...

  5. 【PAT】B1009 说反话

    在输入时直接分别将每个单词放入字符串,逆序输出字符串数组 #include<stdio.h> int main(){ int num=0; char ans[90][90]; while( ...

  6. 手动搭建Docker本地私有镜像仓库

    实验环境:两个Centos7虚拟机,一个是Server,用作客户端,另一个是Registry,用作Docker私有镜像仓库. 基础配置 查看一下两台虚拟机的IP地址 Server的IP地址是192.1 ...

  7. February 14th, 2018 Week 7th Wednesday

    Love does not dominate, it culitvates. 爱不是羁绊,而是成就. Love should not wipe out everything you are, love ...

  8. JavaScript原型链和继承

    1.概念 JavaScript并不提供一个class的实现,在ES6中提供class关键字,但是这个只是一个语法糖,JavaScript仍然是基于原型的.JavaScript只有一种结构:对象.每个对 ...

  9. 注册mySQL到JDBC驱动程序方法浅谈

    一.注册方法(4种) 1)服务提供者框架: 符合JDBC 4.0规范的驱动程序包含了一个文件META-INF/services/java.sql.Driver,在这个文件中提供了JDBC驱动实现的类名 ...

  10. CentOS 7 安装telnet服务

    今天测试zabbix需要用到telnet服务,查询到Centos7下下载安装telnet服务的方法,特此整理记录! 一.通过yum下载安装telnet yum -y install xinetd te ...