之前用学生证在graphlab上申了一年的graphlab使用权(华盛顿大学机器学习课程需要)然后今天突然想到完全可以用这个东东来参加kaggle.

下午参考了一篇教程,把notebook上面的写好了

本文很多代码参考了turi官网的一个教程,有兴趣的同学可以去看原版 https://turi.com/learn/gallery/notebooks/who_survived_the_titanic.html

代码

import graphlab as gl
%matplotlib inline
import matplotlib.pyplot as mpl
mpl.rcParams['figure.figsize']=(15.0,8.0)
import numpy as np

第一步:数据探索

导入数据

train = graphlab.SFrame.read_csv('train.csv')

数据探索与数据可视化

#看看除了Survived这一列以外其他列的缺值情况
columns = ("Pclass", "Name", "Sex", "Age", "SibSp", "Parch", "Ticket", "Fare", "Cabin", "Embarked")
not_null=[sum(1 for el in train[column] if el or el == 0)for column in columns]
null = [len(train) - el for el in not_null]
#数字指代第几列
indexes = np.arange(len(columns))
width = 0.5
#用柱形图表示缺值情况
not_null_bar = mpl.bar(indexes, not_null, width, color='green', edgecolor='white', alpha=0.8)#非空为绿,底色为白
null_bar = mpl.bar(indexes, null, width, color='red', edgecolor='white', bottom=not_null, alpha=0.8)#空值为红,底色为白
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1)#横轴的范围
#柱形图标题
mpl.title('Null values for each column', fontsize=20, weight='bold')
#x轴单位长度
mpl.xticks(indexes + width/2., columns, fontsize=16)
#y轴单位长度
mpl.yticks(np.arange(0,1200,100))
#右上角为图例
mpl.legend( (not_null_bar[0], null_bar[0]), ('Not Null', 'Null') )

观察上图我们知道Age列有少量缺值,Cabin列有大量的缺值,于是我们需要补全Age缺值,但是把Cabin列整个忽略

直接用Age的均值补全空值

train = train.fillna('Age',train['Age'].mean())
#看看除了Survived这一列以外其他列的缺值情况
columns = ("Pclass", "Name", "Sex", "Age", "SibSp", "Parch", "Ticket", "Fare", "Cabin", "Embarked")
not_null=[sum(1 for el in train[column] if el or el == 0)for column in columns]
null = [len(train) - el for el in not_null]
#数字指代第几列
indexes = np.arange(len(columns))
width = 0.5
#用柱形图表示缺值情况
not_null_bar = mpl.bar(indexes, not_null, width, color='green', edgecolor='white', alpha=0.8)#非空为绿,底色为白
null_bar = mpl.bar(indexes, null, width, color='red', edgecolor='white', bottom=not_null, alpha=0.8)#空值为红,底色为白
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1)#横轴的范围
#柱形图标题
mpl.title('Null values for each column', fontsize=20, weight='bold')
#x轴单位长度
mpl.xticks(indexes + width/2., columns, fontsize=16)
#y轴单位长度
mpl.yticks(np.arange(0,1200,100))
#右上角为图例
mpl.legend( (not_null_bar[0], null_bar[0]), ('Not Null', 'Null') )

我们看看Pclass与生存率的关系

passenger_class = train["Pclass"].astype(str)
#观察每个Pclass的存活率
#用groupby方法
class_distribution = train.groupby(["Pclass", "Survived"], {'count':gl.aggregate.COUNT()})
#用0和1过滤出生存和死亡
survived = class_distribution.filter_by(1,'Survived').sort("Pclass")
died = class_distribution.filter_by(0,'Survived').sort("Pclass") width = 0.5
#柱形图的参数
survived_bar = mpl.bar(survived["Pclass"], survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(died["Pclass"], died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by Passengers Class', fontsize=20, weight='bold')
mpl.xticks(survived["Pclass"] + width/2., survived["Pclass"], fontsize=16)
mpl.xlim(0.5,4)
mpl.yticks(np.arange(0,600,50))
mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) for ind in np.arange(len(survived)):
ind = int(ind)
x = 1 + ind + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center')

由此可见,Pclass的存活率从1到3逐次下降

我们看看性别与生存率的关系

sex_distribution = train.groupby(["Sex", "Survived"], {'count':gl.aggregate.COUNT()})

survived = sex_distribution.filter_by(1,'Survived').sort("Sex")
died = sex_distribution.filter_by(0,'Survived').sort("Sex") indexes = np.arange(len(survived["Sex"])) width = 0.5 survived_bar = mpl.bar(indexes, survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(indexes, died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by Sex', fontsize=20, weight='bold')
survived["Sex"] = [sex.capitalize() for sex in survived["Sex"]]
mpl.xticks(indexes + width/2., survived["Sex"], fontsize=16)
mpl.xlim(-0.5,2)
mpl.yticks(np.arange(0,700, 50))
mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) for ind in indexes:
ind = int(ind)
x = ind + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center')
mpl.show()

我们看看年龄与生存率的关系

为了更加直观的体现成人与小孩的区别,我再增加一个"Categorized_Age"列

我们使用apply方法来对每个元素进行作用,小于18岁称为小孩,其余均为大人。

#增加列,18以下称为child
train['Categorized_Age'] = train['Age'].apply(lambda x: "Child" if x <= 18 else "Adult")
#用groupby方法把二者关联
age_distribution = train.groupby(["Categorized_Age", "Survived"], {'count':gl.aggregate.COUNT()}).dropna()
#过滤数据
survived = age_distribution.filter_by(1,'Survived').sort("Categorized_Age")
died = age_distribution.filter_by(0,'Survived').sort("Categorized_Age")
#柱形图参数设置
indexes = np.arange(len(survived["Categorized_Age"])) width = 0.5 survived_bar = mpl.bar(indexes, survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(indexes, died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by Age Categorization', fontsize=20, weight='bold')
survived["Categorized_Age"] = [sex.capitalize() for sex in survived["Categorized_Age"]]
mpl.xticks(indexes + width/2., survived["Categorized_Age"], fontsize=16)
mpl.xlim(-0.5,2)
mpl.yticks(np.arange(0,700, 50))
mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) for ind in indexes:
ind = int(ind)
x = ind + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center') mpl.show()

由上图可知,未成年人的存活率远大于成人

我们看看家眷人数与生存率的关系

下面的代码算出了家眷人数与生存率的关系。第一个for循环(line 6)是画图需要,遍历分组完生存率的各个家庭,若某个规模的所有家庭没有人生存,还是要加上一列。事实上,bar方法(line 12,13) 希望在每一个家庭规模都要对应的生存率,但是有5或者8个家眷的家庭都gg了。因此,我们用append方法 (line 8) 增加了两列,生存率记为0。

sibling_spouses = train["SibSp"].astype(str)
sibsp_distribution = train.groupby(["SibSp", "Survived"], {'count':gl.aggregate.COUNT()}).sort(["SibSp"]) survived = sibsp_distribution.filter_by(1,"Survived")
died = sibsp_distribution.filter_by(0,"Survived") for sibsp in sibsp_distribution["SibSp"]:
if not survived.filter_by(sibsp, "SibSp"):
survived = survived.append(gl.SFrame({'SibSp': [sibsp], 'Survived': [1], 'count':[0]})) width = 0.5 survived_bar = mpl.bar(survived["SibSp"], survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(died["SibSp"], died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by SibSp', fontsize=20, weight='bold')
mpl.xticks(survived["SibSp"] + width/2., survived["SibSp"], fontsize=16)
mpl.xlim(-0.5,9)
mpl.yticks(np.arange(0,750,50))
mpl.xlabel("SibSp", fontsize=16)
mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) for ind in np.arange(len(survived)):
ind = int(ind)
x = survived["SibSp"][ind] + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center') mpl.show()

由上图可知,有一个配偶的家庭生存率最高,三口之家次之,接下来才是单身狗,而家眷超过三人生存希望渺茫.

我们看看有没有孩子与生存率的关系

parents_children = train["Parch"].astype(str)
parch_distribution = train.groupby(["Parch", "Survived"], {'count':gl.aggregate.COUNT()}) survived = parch_distribution.filter_by(1,"Survived")
died = parch_distribution.filter_by(0,"Survived") for parch in parch_distribution["Parch"]:
if not survived.filter_by(parch, "Parch"):
survived = survived.append(gl.SFrame({'Parch': [parch], 'Survived': [1], 'count':[0]})) survived = survived.sort("Parch")
died = died.sort("Parch") width = 0.5 survived_bar = mpl.bar(survived["Parch"], survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(died["Parch"], died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by Parch', fontsize=20, weight='bold')
mpl.xticks(survived["Parch"] + width/2., survived["Parch"], fontsize=16)
mpl.xlim(-0.5,7)
mpl.yticks(np.arange(0,800,50))
mpl.xlabel("Parch", fontsize=16)
mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) for ind in np.arange(len(survived)):
ind = int(ind)
x = survived["Parch"][ind] + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center') mpl.show()

我们看看船费与生存率的关系(有钱人可能有特权

fare = train["Fare"]
survived = train.filter_by(1,'Survived')["Fare"]
died = train.filter_by(0,'Survived')["Fare"] data_to_plot = [died, survived] bp = mpl.boxplot(data_to_plot,patch_artist=True, vert=0) ## change outline color, fill color and linewidth of the boxes
for box in bp['boxes']:
# change outline color
box.set( color='#7570b3', linewidth=2)
# change fill color
box.set( facecolor = '#1b9e77' ) ## change color and linewidth of the whiskers
for whisker in bp['whiskers']:
whisker.set(color='#7570b3', linewidth=2) ## change color and linewidth of the caps
for cap in bp['caps']:
cap.set(color='#7570b3', linewidth=2) ## change color and linewidth of the medians
for median in bp['medians']:
median.set(color='#b2df8a', linewidth=2) ## change the style of fliers and their fill
for flier in bp['fliers']:
flier.set(marker='o', color='#e7298a', alpha=0.5) mpl.yticks([1,2],['Died', 'Survived'], fontsize=20)
mpl.xticks(np.arange(0,700, 20))
mpl.xlim(-10,515)
mpl.title("Survived by Fare", fontsize=20, weight='bold')
mpl.show()

这个图是反着看的,活下来的人跟死去的人花的船费对比。活下来的人普遍花了较多的船费,均值在35刀。而死去的人花费均值才几美刀。(注意有个花500多刀的真·土豪

我们看看上船渡口与生存率的关系

port = train["Embarked"].apply(
lambda el: el + " (S = Southampton)" if el == "S"
else ( el + " (C = Cherbourg)" if el == "C"
else (el + " (Q = Queenstown)" if el == "Q" else None)))
port.tail(1) # force the lambda to materialize before .show() is processed
port.show() embarked_distribution = train.groupby(["Embarked", "Survived"], {'count':gl.aggregate.COUNT()}).dropna() survived = embarked_distribution.filter_by(1,'Survived').sort("Embarked")
survived = survived[1:]
died = embarked_distribution.filter_by(0,'Survived').sort("Embarked") indexes = np.arange(len(survived["Embarked"])) width = 0.5 survived_bar = mpl.bar(indexes, survived["count"], width, color='green', edgecolor='white', alpha=0.8)
died_bar = mpl.bar(indexes, died["count"], width, color='red', edgecolor='white', bottom=survived["count"], alpha=0.8)
mpl.xlim( indexes[0] - 0.5, indexes[-1] + 1) mpl.title('Survived by Port of Embarkation', fontsize=20)
labels = [ el + "\n(S = Southampton)" if el == "S" else ( el + "\n(C = Cherbourg)" if el == "C" else el + "\n(Q = Queenstown)") for el in survived["Embarked"]]
mpl.xticks(np.arange(len(survived["Embarked"])) + width/2.,labels, fontsize=16) for ind in indexes:
ind = int(ind)
x = ind + width / 2.
y = survived["count"][ind] + died["count"][ind] + 10
percentage = survived["count"][ind] / float( survived["count"][ind] + died["count"][ind]) * 100
mpl.text(x, y, "%5.2f%%" % percentage, fontsize=20, ha='center') mpl.legend( (survived_bar[0], died_bar[0]), ('Survived', 'Died') ) mpl.show()

所以Cherbourg上船的人存活率巨高……我个人不太明白为什么

第二步:模型构建

在Embarked列中有一些缺值,我们补全一下

train["Embarked"] = train["Embarked"].apply(lambda x: x if x != '' else "S")
port_of_embarkation = train["Embarked"]
port_of_embarkation.tail(1)
port_of_embarkation.show()

在训练集中再取80%来训练模型,20%来验证模型。

train_set, test_set = train.random_split(0.8, seed=4)
print "Rows for training:", train_set.num_rows()
print "Rows for testing:", test_set.num_rows()

试一下 gradient boosted tree 这个模型

model_4 = gl.boosted_trees_regression.create(train_set,target='Survived',
features=['Sex', 'Age', 'Pclass', 'SibSp', 'Parch', 'Embarked', 'Fare'])
result_4 = model_4.evaluate(test_set) print result_4

下面是训练过程
PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
You can set ``validation_set=None`` to disable validation tracking. Boosted trees regression:
--------------------------------------------------------
Number of examples : 663
Number of features : 7
Number of unpacked features : 7
+-----------+--------------+--------------------+----------------------+---------------+-----------------+
| Iteration | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |
+-----------+--------------+--------------------+----------------------+---------------+-----------------+
| 1 | 0.094067 | 0.640132 | 0.640625 | 0.413718 | 0.452089 |
| 2 | 0.095066 | 0.736341 | 0.741699 | 0.361147 | 0.435120 |
| 3 | 0.097067 | 0.799792 | 0.795940 | 0.326181 | 0.414205 |
| 4 | 0.098068 | 0.843834 | 0.853179 | 0.300373 | 0.418672 |
| 5 | 0.099068 | 0.866550 | 0.875894 | 0.284084 | 0.414071 |
| 6 | 0.100069 | 0.886572 | 0.895917 | 0.268531 | 0.401603 |
+-----------+--------------+--------------------+----------------------+---------------+-----------------+
{'max_error': 0.9767722487449646, 'rmse': 0.3790493668897309}

三、导入测试集进行预测

test = graphlab.SFrame.read_csv('test.csv')
model_4.predict(test)
dtype: float
Rows: 418
[0.24605900049209595, 0.1579868197441101, 0.09492728114128113, 0.08076220750808716, 0.820347249507904, 0.13742545247077942, 0.46745458245277405, 0.08334535360336304, 0.6385629177093506, 0.053301453590393066, 0.7933655977249146, 0.10734456777572632, 0.9794546365737915, 0.0696893036365509, 0.9803991913795471, 0.9651352167129517, 0.08926722407341003, 0.32400867342948914, 0.8363758325576782, 0.1579868197441101, 0.4781973361968994, 0.6420668363571167, 0.4161583185195923, 0.28341546654701233, 0.9170076847076416, 0.0696893036365509, 0.9794546365737915, 0.17743894457817078, 0.5841416120529175, 0.7112432718276978, 0.0696893036365509, 0.09834089875221252, 0.7118383646011353, 0.36395323276519775, 0.47720423340797424, 0.2933708429336548, 0.4699748754501343, 0.16753268241882324, 0.0941736102104187, 0.5083406567573547, 0.2918650507926941, 0.7348397970199585, 0.10613331198692322, 0.9710206985473633, 0.9803991913795471, 0.14958679676055908, 0.42003297805786133, 0.5664023756980896, 0.9672679901123047, 0.7332731485366821, 0.5267215967178345, 0.1717779040336609, 0.9495010375976562, 0.9067643880844116, 0.8308284282684326, 0.05739110708236694, 0.08792659640312195, 0.11708483099937439, 0.8308284282684326, 0.9750292301177979, 0.06759494543075562, 0.13685157895088196, 0.10684752464294434, 0.7940642237663269, 0.1582772135734558, 0.7426018714904785, 0.7501979470252991, 0.1021573543548584, 0.2818759083747864, 0.8806270360946655, 0.7940642237663269, 0.06759494543075562, 0.7951251268386841, 0.2818759083747864, 0.9750292301177979, 0.28711044788360596, 0.8174170255661011, 0.9488879442214966, 0.13685157895088196, 0.7940642237663269, 0.893699049949646, 0.04857367277145386, 0.20609065890312195, 0.7933655977249146, 0.6543059349060059, 0.8308284282684326, 0.9047337770462036, 0.16753268241882324, 0.8481748104095459, 0.9108253717422485, 0.5572522878646851, 0.7125066518783569, 0.35652855038642883, 0.8174170255661011, 0.28670477867126465, 0.28864753246307373, 0.9726588726043701, 0.16057392954826355, 0.70356285572052, 0.1119779646396637, ... ]

使用Graphlab参加Kaggle比赛(2017-08-20 发布于知乎)的更多相关文章

  1. Kaggle比赛:从何着手?

    介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法 ...

  2. kaggle比赛流程(转)

    一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是 ...

  3. Kaggle比赛总结

    做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数 ...

  4. 用python参加Kaggle的经验总结【转】

    用python参加Kaggle的经验总结 转载自:http://www.jianshu.com/p/32def2294ae6,作者 JxKing    最近挤出时间,用python在kaggle上试了 ...

  5. 用python参加Kaggle的些许经验总结(收藏)

    Step1: Exploratory Data Analysis EDA,也就是对数据进行探索性的分析,一般就用到pandas和matplotlib就够了.EDA一般包括: 每个feature的意义, ...

  6. Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量

    Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语 ...

  7. http://www.cnblogs.com/jqyp/archive/2010/08/20/1805041.html

    http://www.cnblogs.com/jqyp/archive/2010/08/20/1805041.html

  8. Visual Studio 2017正式版发布全纪录

    又是一年发布季,微软借着Visual Studio品牌20周年之际,于美国太平洋时间2017年3月7日9点召开发布会议,宣布正式发布新一代开发利器Visual Studio 2017.同时发布的还有 ...

  9. .NET Core 2.0版本预计于2017年春季发布

    英文原文: NET Core 2.0 Planned for Spring 2017 微软项目经理 Immo Landwerth 公布了即将推出的 .NET Core 2.0 版本的细节,该版本预计于 ...

随机推荐

  1. Python线程池ThreadPoolExecutor源码分析

    在学习concurrent库时遇到了一些问题,后来搞清楚了,这里记录一下 先看个例子: import time from concurrent.futures import ThreadPoolExe ...

  2. Flutter学习笔记(6)--Dart异常处理

    如需转载,请注明出处:Flutter学习笔记(6)--Dart异常处理 异常是表示发生了意外的错误,如果没有捕获异常,引发异常的隔离程序将被挂起,并且程序将被终止: Dart代码可以抛出并捕获异常,但 ...

  3. 数据结构-循环队列(Python实现)

    今天我们来到了循环队列这一节,之前的文章中,我介绍过了用python自带的列表来实现队列,这是最简单的实现方法. 但是,我们都知道,在列表中删除第一个元素和删除最后一个元素花费的时间代价是不一样的,删 ...

  4. 详细记录登录过程的用户、IP地址、shell命令以及详细操作时间

    将下面的代码添加到/etc/profile #history USER_IP=`>/dev/null|awk '{print $NF}'|sed -e 's/[()]//g'` HISTDIR= ...

  5. [NOIP2003] 传染病控制题解

    问题 F: [NOIP2003] 传染病控制 时间限制: 1 Sec  内存限制: 128 MB 题目描述 [问题背景] 近来,一种新的传染病肆虐全球.蓬莱国也发现了零星感染者,为防止该病在蓬莱国大范 ...

  6. Python多进程与多线程编程及GIL详解

    介绍如何使用python的multiprocess和threading模块进行多线程和多进程编程. Python的多进程编程与multiprocess模块 python的多进程编程主要依靠multip ...

  7. freemarker实现单元格动态合并-行合并

    项目需求:项目中有个需求,需要将一些数据库中的数据根据需求导出,生成一个word,研究了一些技术,其中包括POI.freemaker,对比了一下实现过程及技术难度没最终使用了freemaker; 原始 ...

  8. Java异常与处理机制

    Java的异常层次体系 Java的所有异常对象都派生自Throwable类,下层有两个分支:error和exception. Error分支描述Java运行时系统内部错误或资源耗尽错误,遇到派生自Er ...

  9. GeoPackage - 一个简便轻量的本地地理数据库

    GeoPackage(以下简称gpkg),内部使用SQLite实现的一种单文件.与操作系统无关的地理数据库. 当前标准是1.2.1,该版本的html版说明书:https://www.geopackag ...

  10. Spring还可以这样用缓存,你知道吗?

    大家在项目开发过程中,或多或少都用过缓存,为了减少数据库的压力,把数据放在缓存当中,当访问的请求过来时,直接从缓存读取.缓存一般都是基于内存的,读取速度比较快,市面上比较常见的缓存有:memcache ...