mongodb的索引原理
首先说一下为什么要有索引,大家都知道mongdb是非关系型文档类型数据库,用过的人都有同一种感受,查询的效率太低,当你想提高查询效率的时候可以就需要使用索引了。
哈哈,本来想写一篇的,在网上看到了一篇很好的文章,直接转载了,有些内容后续会补充一些,转载link:http://www.mongoing.com/archives/2797
哇,后来发现作者好牛逼
张友东,阿里巴巴技术专家,主要关注分布式存储、Nosql数据库等技术领域,先后参与TFS(淘宝分布式文件系统)、AliCloudDB for Redis等项目,目前主要从事AlidCloud For MongoDB的研发工作,致力于让开发者用上最好的MongoDB云服务。
为什么需要索引?
当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql)。
mongo-9552:PRIMARY> db.person.find()
{ "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name" : "jack", "age" : 19 }
{ "_id" : ObjectId("571b5dae1b0d530a03b3ce83"), "name" : "rose", "age" : 20 }
{ "_id" : ObjectId("571b5db81b0d530a03b3ce84"), "name" : "jack", "age" : 18 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce85"), "name" : "tony", "age" : 21 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce86"), "name" : "adam", "age" : 18 }
当你往某各个集合插入多个文档后,每个文档在经过底层的存储引擎持久化后,会有一个位置信息,通过这个位置信息,就能从存储引擎里读出该文档。比如mmapv1引擎里,位置信息是『文件id + 文件内offset 』
, 在wiredtiger存储引擎(一个KV存储引擎)里,位置信息是wiredtiger在存储文档时生成的一个key,通过这个key能访问到对应的文档;为方便介绍,统一用pos(position的缩写)
来代表位置信息。
比如上面的例子里,person
集合里包含插入了4个文档,假设其存储后位置信息如下(为方便描述,文档省去_id字段)
位置信息 | 文档 |
---|---|
pos1 | {“name” : “jack”, “age” : 19 } |
pos2 | {“name” : “rose”, “age” : 20 } |
pos3 | {“name” : “jack”, “age” : 18 } |
pos4 | {“name” : “tony”, “age” : 21} |
pos5 | {“name” : “adam”, “age” : 18} |
假设现在有个查询 db.person.find( {age: 18} )
, 查询所有年龄为18岁的人,这时需要遍历所有的文档(『全表扫描』),根据位置信息读出文档,对比age字段是否为18。当然如果只有4个文档,全表扫描的开销并不大,但如果集合文档数量到百万、甚至千万上亿的时候,对集合进行全表扫描开销是非常大的,一个查询耗费数十秒甚至几分钟都有可能。
如果想加速 db.person.find( {age: 18} )
,就可以考虑对person表的age字段建立索引。
db.person.createIndex( {age: 1} ) // 按age字段创建升序索引
建立索引后,MongoDB会额外存储一份按age字段升序排序的索引数据,索引结构类似如下,索引通常采用类似btree的结构持久化存储,以保证从索引里快速(O(logN)的时间复杂度
)找出某个age值对应的位置信息,然后根据位置信息就能读取出对应的文档。
AGE | 位置信息 |
---|---|
18 | pos3 |
18 | pos5 |
19 | pos1 |
20 | pos2 |
21 | pos4 |
简单的说,索引就是将文档
按照某个(或某些)字段顺序组织起来,以便能根据该字段高效的查询。有了索引,至少能优化如下场景的效率:
- 查询,比如查询年龄为18的所有人
- 更新/删除,将年龄为18的所有人的信息更新或删除,因为更新或删除时,需要根据条件先查询出所有符合条件的文档,所以本质上还是在优化查询
- 排序,将所有人的信息按年龄排序,如果没有索引,需要全表扫描文档,然后再对扫描的结果进行排序
众所周知,MongoDB默认会为插入的文档生成_id字段(如果应用本身没有指定该字段),_id是文档唯一的标识,为了保证能根据文档id快递查询文档,MongoDB默认会为集合创建_id字段的索引。
mongo-9552:PRIMARY> db.person.getIndexes() // 查询集合的索引信息
[
{
"ns" : "test.person", // 集合名
"v" : 1, // 索引版本
"key" : { // 索引的字段及排序方向
"_id" : 1 // 根据_id字段升序索引
},
"name" : "_id_" // 索引的名称
}
]
MongoDB索引类型
MongoDB支持多种类型的索引,包括单字段索引、复合索引、多key索引、文本索引等,每种类型的索引有不同的使用场合。
单字段索引 (Single Field Index)
db.person.createIndex( {age: 1} )
上述语句针对age创建了单字段索引,其能加速对age字段的各种查询请求,是最常见的索引形式,MongoDB默认创建的id索引也是这种类型。
{age: 1} 代表升序索引,也可以通过{age: -1}来指定降序索引,对于单字段索引,升序/降序效果是一样的。
复合索引 (Compound Index)
复合索引是Single Field Index的升级版本,它针对多个字段联合创建索引,先按第一个字段排序,第一个字段相同的文档按第二个字段排序,依次类推,如下针对age, name这2个字段创建一个复合索引。
db.person.createIndex( {age: 1, name: 1} )
上述索引对应的数据组织类似下表,与{age: 1}索引不同的时,当age字段相同时,在根据name字段进行排序,所以pos5对应的文档排在pos3之前。
AGE,NAME | 位置信息 |
---|---|
18,adam | pos5 |
18,jack | pos3 |
19,jack | pos1 |
20,rose | pos2 |
21,tony | pos4 |
复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如db.person.find( {age: 18, name: "jack"} )
,也能满足所以能匹配符合索引前缀的查询,这里{age: 1}即为{age: 1, name: 1}的前缀,所以类似db.person.find( {age: 18} )
的查询也能通过该索引来加速;但db.person.find( {name: "jack"} )
则无法使用该复合索引。如果经常需要根据『name字段』以及『name和age字段组合』来查询,则应该创建如下的复合索引
db.person.createIndex( {name: 1, age: 1} )
除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使person集合所有的查询都是『name和age字段组合』(指定特定的name和age),字段的顺序也是有影响的。
age字段的取值很有限,即拥有相同age字段的文档会有很多;而name字段的取值则丰富很多,拥有相同name字段的文档很少;显然先按name字段查找,再在相同name的文档里查找age字段更为高效。
多key索引 (Multikey Index)
当索引的字段为数组时,创建出的索引称为多key索引,多key索引会为数组的每个元素建立一条索引,比如person表加入一个habbit字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用habbit字段的多key索引。
{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} ) // 自动创建多key索引
db.person.find( {habbit: "football"} )
其他类型索引
哈希索引(Hashed Index)是指按照某个字段的hash值来建立索引,目前主要用于MongoDB Sharded Cluster的Hash分片,hash索引只能满足字段完全匹配的查询,不能满足范围查询等。
地理位置索引(Geospatial Index)能很好的解决O2O的应用场景,比如『查找附近的美食』、『查找某个区域内的车站』等。
文本索引(Text Index)能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。
索引额外属性
MongoDB除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。
- 唯一索引 (unique index):保证索引对应的字段不会出现相同的值,比如_id索引就是唯一索引
- TTL索引:可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期 或 在某个时间点过期)
- 部分索引 (partial index): 只针对符合某个特定条件的文档建立索引,3.2版本才支持该特性
- 稀疏索引(sparse index): 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况
索引优化
db profiling
MongoDB支持对DB的请求进行profiling,目前支持3种级别的profiling。
- 0: 不开启profiling
- 1: 将处理时间超过某个阈值(默认100ms)的请求都记录到DB下的system.profile集合 (类似于mysql、redis的slowlog)
- 2: 将所有的请求都记录到DB下的system.profile集合(生产环境慎用)
通常,生产环境建议使用1级别的profiling,并根据自身需求配置合理的阈值,用于监测慢请求的情况,并及时的做索引优化。
如果能在集合创建的时候就能『根据业务查询需求决定应该创建哪些索引』,当然是最佳的选择;但由于业务需求多变,要根据实际情况不断的进行优化。索引并不是越多越好,集合的索引太多,会影响写入、更新的性能,每次写入都需要更新所有索引的数据;所以你system.profile里的慢请求可能是索引建立的不够导致,也可能是索引过多导致。
查询计划
索引已经建立了,但查询还是很慢怎么破?这时就得深入的分析下索引的使用情况了,可通过查看下详细的查询计划来决定如何优化。通过执行计划可以看出如下问题
- 根据某个/些字段查询,但没有建立索引
- 根据某个/些字段查询,但建立了多个索引,执行查询时没有使用预期的索引。
建立索引前,db.person.find( {age: 18} )
必须执行COLLSCAN,即全表扫描。
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"age" : {
"$eq" : 18
}
},
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
建立索引后,通过查询计划可以看出,先进行[IXSCAN]((https://docs.mongodb.org/manual/reference/explain-results/#queryplanner)(从索引中查找),然后FETCH,读取出满足条件的文档。
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"age" : 1
},
"indexName" : "age_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[18.0, 18.0]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
mongodb的索引原理的更多相关文章
- Mongodb Geo2d索引原理
作者:孔德雨 MongoDB的geo索引是其一大特色,本文从原理层面讲述geo索引中的2d索引的实现. 2d 索引的创建与使用 通过 db.coll.createIndex({"lag&qu ...
- 图解 MongoDB 地理位置索引的实现原理(转)
原文链接:图解 MongoDB 地理位置索引的实现原理 地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据 ...
- MongoDB · 引擎特性 · MongoDB索引原理
MongoDB · 引擎特性 · MongoDB索引原理数据库内核月报原文链接 http://mysql.taobao.org/monthly/2018/09/06/ 为什么需要索引?当你抱怨Mong ...
- MongoDB索引(一) --- 入门篇:学习使用MongoDB数据库索引
这个系列文章会分为两篇来写: 第一篇:入门篇,学习使用MongoDB数据库索引 第二篇:进阶篇,研究数据库索引原理--B/B+树的基本原理 1. 准备工作 在学习使用MongoDB数据库索引之前,有一 ...
- MongoDB之索引
索引是用来加快查询的,这里不解说索引的原理和数据结构.事实上大部分数据库的索引就是B+Tree,想要了解的同学能够看索引原理,要掌握怎样为查询配置最佳索引会有些难度. MongoDB索引差点儿和关系型 ...
- MongoDB 分片的原理、搭建、应用 !
MongoDB 分片的原理.搭建.应用 一.概念: 分片(sharding)是指将数据库拆分,将其分散在不同的机器上的过程.将数据分散到不同的机器上,不需要功能强大的服务器就可以存储更多的数据和处 ...
- mongodb基本命令,mongodb集群原理分析
mongodb基本命令,mongodb集群原理分析 集合: 1.集合没有固定数据格式. 2. 数据: 时间类型: Date() 当前时间(js时间) new Date() 格林尼治时间(object) ...
- MySQL的InnoDB索引原理详解
摘要 本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节. InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档).本着高效学习的目的,本篇 ...
- MySQL索引原理及慢查询优化
原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...
随机推荐
- HBase 学习之路(四)—— HBase集群环境配置
一.集群规划 这里搭建一个3节点的HBase集群,其中三台主机上均为Regin Server.同时为了保证高可用,除了在hadoop001上部署主Master服务外,还在hadoop002上部署备用的 ...
- 【JAVA8】Set排序四种写法
工作中遇到,写了很久以前的写法,师兄给了很多建议,于是整理了一下.孔子曰:"你知道茴香豆的茴字有几种写法吗?" 第一种,平常的写法: public class App { publ ...
- 【shell学习4》》】系统化整理大纲
之前看的runnoob整理,细节太多也没有系统起来,昨天公交上看了一些视频,略作总结: 标题零:学习基础//创建文件touch testVar.sh //vim编辑内容#!/bin/bashvari= ...
- memcache常见现象(一)雪崩现象
memcache常见现象(一)雪崩现象 解释:memcached雪崩现象就是因为缓存服务器出现问题导致数据库压力增大,导致数据库不能正常运行. 1.很多大的公司网站可能会有很多台缓存服务器,这样如果其 ...
- python工具函数
1. translate translate要比replace要高效,translate支持替换多 使用translate之前必须要创建一个转换表.要创建转换表,可对字符串类型str调用方法maket ...
- ASP.NET、.NET和C#的关系是怎样的?
1..NET是什么?.Net全称.NET Framework是一个开发和运行环境,该战略是微软的一项全新创意,它将使得“互联网行业进入一个更先进的阶段”,.NET不是一种编程语言. 简单说就是一组类库 ...
- Java面试总结(一)
1.equals和==和hashcode “==”是运算符,比较两个变量的值是否相等 equals是Object类的方法.比较两个对象是否相等 hashcode是Object类的方法,返回一个 ...
- c++学习书籍推荐《C++ Primer(中文版)(第5版)》下载
百度云及其他网盘下载地址:点我 编辑推荐 <C++ Primer(中文版)(第5版)>编辑推荐:一书在手,架构无忧:三十位一线架构师真知实践:百位架构师献计献策:十万文字尽显架构精华. 媒 ...
- Centos7 防护墙 设置端口
Centos7中的防火墙调整为firewalld,试一下systemctl stop firewalld关闭防火墙. 命令:systemctl stop firewalld 命令:systemctl ...
- Bzoj 4582 [Usaco2016 Open] Diamond Collector 题解
4582: [Usaco2016 Open]Diamond Collector Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 204 Solved: ...