求解LCA问题的几种方式
求解LCA问题的几种方式
这篇随笔讲解图论中LCA问题(最近公共祖先)的几种求解方式及实现方法。LCA问题属于高级图论,所以希望读者学习过初级图论,知道图的一些基本知识,并懂得深搜算法的实现方式。这样理解本篇博客将会快捷、舒适。
知识准备
理解LCA问题,理解节点深度是至关重要的,大家可以画一棵树。在一棵树中,所有的节点都有一个深度。根节点的深度是1,其他节点的深度可以用深搜遍历树来处理出来。这样,我们就可以通过深度数组来实现解决LCA问题的算法。
朴素LCA算法
朴素LCA算法的实现过程大约是这样:对于询问的两个点\(x,y\),先判断两个点谁更深一些,然后把更深的点顺着它的父节点一步步往上提升,直到和\(y\)点的深度相等为止。然后同时提升\(x,y\)两点,直到这两个点变成同一个点,这时的那个点就是我们要求的LCA。
根据这个算法实现的特点,我们叫他“爬一爬”算法。这种算法极容易理解,但是奇慢无比。所以我们就不给代码了。
倍增LCA算法
刚刚提到的LCA朴素算法比较好理解,但是奇慢无比。所以我们推出了更高级一点的方法:倍增LCA。倍增思想其实是非常好用的一种优化思想,在算法优化中有很多使用实例。比如RMQ问题的暴力方法用倍增优化之后就变成了ST表(ST算法),比如LCA的爬一爬算法用倍增优化之后就变成了倍增LCA算法。
所谓倍增LCA,其实很好理解,就是原来的朴素算法是一个一个爬,我们现在变成一次爬\(2^k\)个,这样就会大大优化复杂度。
实现的步骤并没有任何变化:都是先爬比较小的那个,后一起爬。但是这个时候我们就要处理一个二维数组f。\(f[x][k]\)表示\(x\)的第\(2^k\)辈的祖先是谁。这样,我们就可以得出一个递推式:
\]
需要说明的是,这里需要提前处理出f数组和deep数组,对于这种操作,我们可以在树上进行深搜来实现。
模板如下:
void dfs(int x,int f)
{
deep[x]=deep[f]+1;
fa[x][0]=f;
for(int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs(y,x);
}
}
应该是很好理解的:\(x\)的第\(2^k\)辈的祖先就等于\(x\)的第\(2^{k-1}\)辈的祖先的第\(2^{k-1}\)辈的祖先。
(其实这是个动态规划的过程)
剩下的就是一些细节问题。请大家多多注意,以后求LCA问题的时候根据不同的题目要求,就改这个模板即可。
代码:
int lca(int x,int y)
{
int ret;
if(deep[x]<deep[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(deep[fa[x][i]]>=deep[y])
x=fa[x][i];
if(x==y)
return y;
for(int i=20;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
else
ret=fa[x][i];
}
return ret;
}
求解LCA问题的几种方式的更多相关文章
- [C++]四种方式求解最大子序列求和问题
问题 给定整数: A1,A2,-,An,求∑jk=iAk 的最大值(为方便起见,假设全部的整数均为负数,则最大子序列和为0) 比如 对于输入:-2,11,-4,13,-5,-2,答案为20,即从A2到 ...
- Codeforces Round #466 (Div. 2) B. Our Tanya is Crying Out Loud[将n变为1,有两种方式,求最小花费/贪心]
B. Our Tanya is Crying Out Loud time limit per test 1 second memory limit per test 256 megabytes inp ...
- PyODPS DataFrame 处理笛卡尔积的几种方式
PyODPS 提供了 DataFrame API 来用类似 pandas 的接口进行大规模数据分析以及预处理,本文主要介绍如何使用 PyODPS 执行笛卡尔积的操作. 笛卡尔积最常出现的场景是两两之间 ...
- Struts2实现ajax的两种方式
基于Struts2框架下实现Ajax有两种方式,第一种是原声的方式,另外一种是struts2自带的一个插件. js部分调用方式是一样的: JS代码: function testAjax() { var ...
- Spark读写Hbase的二种方式对比
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...
- Android中访问sdcard路径的几种方式
以前的Android(4.1之前的版本)中,SDcard路径通过"/sdcard"或者"/mnt/sdcard"来表示,而在JellyBean(安卓4.1)系统 ...
- C#执行异步操作的几种方式比较和总结
C#执行异步操作的几种方式比较和总结 0x00 引言 之前写程序的时候在遇到一些比较花时间的操作例如HTTP请求时,总是会new一个Thread处理.对XxxxxAsync()之类的方法也没去了解过, ...
- Windows10-UWP中设备序列显示不同XAML的三种方式[3]
阅读目录: 概述 DeviceFamily-Type文件夹 DeviceFamily-Type扩展 InitializeComponent重载 结论 概述 Windows10-UWP(Universa ...
- CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking)
CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking) 我在(Modern OpenGL用Shader拾取 ...
随机推荐
- 对比keep-alive路由缓存设置的2种方式
方式有两种 .路由元信息(2.1.0版本之前) .属性方式(2.1.0版本之后新增) Vue2.1.0之前: 想实现类似的操作,你可以: 配置一下路由元信息 创建两个keep-alive标签 使用v- ...
- [C0] 引言(Introduction)
引言(Introduction) 欢迎(Welcome) 机器学习是目前信息技术中最激动人心的方向之一.在这门课中,你将学习到这门技术的前沿,并可以自己实现学习机器学习的算法. 你或许每天都在不知不觉 ...
- linux编程fcntl获取和设置文件状态
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> ...
- Linux下修改Mysql密码的三种方式
前言 有时我们会忘记Mysql的密码,或者想改一个密码,以下将对这两种情况修改密码的三种解决方法做个总结 本文都以用户为 root 为例 一.拥有原来的myql的root的密码 方法一: 在mysql ...
- Java连载46-Java中的多态
一.多态的语法 1.关于多态中涉及到几个概念 (1)向上转型(upcasting) 子类型转换为父类型,又被称为自动类型转换 (2)向下转型(downcasting) 父类型转换为子类型,又被称为强制 ...
- Python 相对路径和绝对路径--python实战(九)
一 背景信息 最近在运行python程序的过程中,无意遇到了这个一个问题,在同事那边一直执行ok的程序,到我这里怎么都有个错误,当初报的错误是这样的: FileNotFoundError: [Errn ...
- Kettle-动态数据链接,使JOB得以复用
动态数据连接,使JOB得以复用 背景 移动执法系统在目前的主要的部署策略为1+N的方式,即总队部署一套,地市各部署一套,且基本都在环保专网.各地市的业务数据需要推送到总队系统,以便总队系统做整体的监督 ...
- C# 局部类/方法
没怎么用过的东西. 算是比较神奇的东西(见识短[笑]). 关键字是partial 如果在类应用关键字,则是局部类. 如果在方法应用关键字,则是局部方法. 局部类理解差不多就是一个东西分开了,但是还是一 ...
- oracle 中 to_date 函数的用法
常犯错的使用方法. to_date('2019-08-12 22:05:','yyyy-MM-dd HH24:mm:ss') Oracle中会引起错误:"ORA 01810 格式代码出现两次 ...
- C#中对文件File常用操作方法的工具类
场景 C#中File类的常用读取与写入文件方法的使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/99693983 注: 博客 ...