【JDK】JDK源码分析-LinkedHashMap
概述
前文「JDK源码分析-HashMap(1)」分析了 HashMap 主要方法的实现原理(其他问题以后分析),本文分析下 LinkedHashMap。
先看一下 LinkedHashMap 的类继承结构图:
可以看到 LinkedHashMap 继承了 HashMap。
我们知道 HashMap 是无序的,即迭代器的顺序与插入顺序没什么关系。而 LinkedHashMap 在 HashMap 的基础上增加了顺序:分别为「插入顺序」和「访问顺序」。即遍历 LinkedHashMap 时,可以保持与插入顺序一致的顺序;或者与访问顺序一致的顺序。
LinkedHashMap 内部如何实现这两种顺序的呢?它是通过一个双链表来维持的。因此可以将 LinkedHashMap 理解为「双链表 + 散列表」,或者“有序的散列表”。
代码分析
节点类 Entry
LinkedHashMap 内部有一个嵌套类 Entry,它继承自 HashMap 中的 Node 类,如下:
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
// ...
}
该 Entry 类就是 LinkedHashMap 中的节点类。可以看到,它在 Node 类的基础上又增加了 before 和 after 两个变量,它们保存的是节点的前驱和后继(从字面意思也可以进行推测),从而来维护 LinkedHashMap 的顺序。
成员变量
/**
* The head (eldest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> head; /**
* The tail (youngest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> tail; /**
* The iteration ordering method for this linked hash map: true
* for access-order, false for insertion-order.
* LinkedHashMap 的迭代顺序:true 为访问顺序;false 为插入顺序。
*/
final boolean accessOrder;
构造器
构造器1:
/**
* Constructs an empty insertion-ordered LinkedHashMap instance
* with the default initial capacity (16) and load factor (0.75).
*/
public LinkedHashMap() {
super();
accessOrder = false;
}
这里的 super() 方法调用了 HashMap 的无参构造器。该构造器方法构造了一个容量为 16(默认初始容量)、负载因子为 0.75(默认负载因子)的空 LinkedHashMap,其顺序为插入顺序。
构造器 2、3、4、5:
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
} public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
} public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
} public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
可以看到上面几个构造器都是通过调用父类(HashMap)的构造器方法初始化,对此不再进行分析。前面 4 个构造器的 accessOrder 变量默认值都为 false;最后一个稍微不一样,它的 accessOrder 可以在初始化时指定,即指定 LinkedHashMap 的顺序(插入或访问顺序)。
put 方法
LinkedHashMap 本身没有实现 put 方法,它通过调用父类(HashMap)的方法来进行读写操作。这里再贴下 HashMap 的 put 方法:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
// 新的 bin 节点
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// key 已存在
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 散列冲突
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 遍历链表
for (int binCount = 0; ; ++binCount) {
// 将新节点插入到链表末尾
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
这个方法哪个地方跟 LinkedHashMap 有联系呢?如何能保持 LinkedHashMap 的顺序呢?且看其中的 newNode() 方法,它在 HashMap 中的代码如下:
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
但是,LinkedHashMap 重写了该方法:
// 新建一个 LinkedHashMap.Entry 节点
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
// 将新节点连接到列表末尾
linkNodeLast(p);
return p;
}
// link at the end of list
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
// list 为空
if (last == null)
head = p;
else {
// 将新节点插入到 list 末尾
p.before = last;
last.after = p;
}
}
可以看到,每次插入新节点时,都会存到列表的末尾。原来如此,LinkedHashMap 的插入顺序就是在这里实现的。
此外,上文分析 HashMap 时提到两个回调方法:afterNodeAccess 和 afterNodeInsertion。它们在 HashMap 中是空的:
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
同样,LinkedHashMap 对它们进行了重写。先来分析 afterNodeAccess 方法:
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
// accessOrder 为 true 表示访问顺序
if (accessOrder && (last = tail) != e) {
// p 为访问的节点,b 为其前驱,a 为其后继
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
// p 是头节点
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
为了便于分析和理解,这里画出了两个操作示意图:
这里描述了进行该操作前后的两种情况。可以看到,该方法执行后,节点 p 被移到了 list 的末尾。
get 方法
LinkedHashMap 重写了 HashMap 的 get 方法,主要是为了维持访问顺序,代码如下:
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
// 若为访问顺序,将访问的节点移到列表末尾
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
这里的 getNode 方法是父类的(HashMap)。若 accessOrder 为 true(即指定为访问顺序),则将访问的节点移到列表末尾。
LinkedHashMap 中重写的 afterNodeInsertion 方法:
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
} // LinkedHashMap 中默认的返回值为 false,即这里的 removeNode 方法不执行
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
removeNode 方法是父类 HashMap 中的。
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable
) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// table 不为空,且给的的 hash 值所在位置不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 给定 key 对应的节点,在数组中第一个位置
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
// 给定的 key 所在位置为红黑树或链表
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 删除节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
// 删除节点后的操作
afterNodeRemoval(node);
return node;
}
}
return null;
}
afterNodeRemoval 方法在 HashMap 中的实现也是空的:
void afterNodeRemoval(Node<K,V> p) { }
LinkedHashMap 重写了该方法:
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.before = p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}
该方法就是双链表删除一个节点的操作。
代码演练
LinkedHashMap 用法
我们知道 HashMap 是无序的,例如:
Map<String, String> map = new HashMap<>();
map.put("bush", "a");
map.put("obama", "b");
map.put("trump", "c");
map.put("lincoln", "d");
System.out.println(map); // 输出结果(无序):
// {obama=b, trump=c, lincoln=d, bush=a}
而若换成 LinkedHashMap,则可以保持插入的顺序:
Map<String, String> map = new LinkedHashMap<>();
map.put("bush", "a");
map.put("obama", "b");
map.put("trump", "c");
map.put("lincoln", "d");
System.out.println(map); // 输出结果(插入顺序):
// {bush=a, obama=b, trump=c, lincoln=d}
指定 LinkedHashMap 的顺序为访问顺序:
Map<String, String> map = new LinkedHashMap<>(2, 0.75f, true);
map.put("bush", "a");
map.put("obama", "b");
map.put("trump", "c");
map.put("lincoln", "d");
System.out.println(map); map.get("obama");
System.out.println(map); // 输出结果(插入顺序):
// {bush=a, obama=b, trump=c, lincoln=d} // 访问 obama 后,obama 移到了末尾
// {bush=a, trump=c, lincoln=d, obama=b}
实现 LRU 缓存
private static class LRUCache<K, V> extends LinkedHashMap<K, V> {
private int capacity; public LRUCache(int capacity) {
super(16, 0.75f, true);
this.capacity = capacity;
} @Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > capacity;
}
}
使用举例:
LRUCache<String, String> lruCache = new LRUCache<>(2);
lruCache.put("bush", "a");
lruCache.put("obama", "b");
lruCache.put("trump", "c");
System.out.println(lruCache); // 输出结果:
// {obama=b, trump=c}
这里定义的 LRUCache 类中,对 removeEldestEntry 方法进行了重写,当缓存中的容量大于 2,时会把最早插入的元素 "bush" 删除。因此只剩下两个值。
小结
1. LinkedHashMap 继承自 HashMap,其结构可以理解为「双链表 + 散列表」;
2. 可以维护两种顺序:插入顺序或访问顺序;
3. 可以方便的实现 LRU 缓存;
4. 线程不安全。
Stay hungry, stay foolish.
PS: 本文首发于微信公众号【WriteOnRead】。
【JDK】JDK源码分析-LinkedHashMap的更多相关文章
- JDK Collection 源码分析(2)—— List
JDK List源码分析 List接口定义了有序集合(序列).在Collection的基础上,增加了可以通过下标索引访问,以及线性查找等功能. 整体类结构 1.AbstractList 该类作为L ...
- JDK AtomicInteger 源码分析
@(JDK)[AtomicInteger] JDK AtomicInteger 源码分析 Unsafe 实例化 Unsafe在创建实例的时候,不能仅仅通过new Unsafe()或者Unsafe.ge ...
- 设计模式(十八)——观察者模式(JDK Observable源码分析)
1 天气预报项目需求,具体要求如下: 1) 气象站可以将每天测量到的温度,湿度,气压等等以公告的形式发布出去(比如发布到自己的网站或第三方). 2) 需要设计开放型 API,便于其他第三方也能接入气象 ...
- JDK Collection 源码分析(3)—— Queue
@(JDK)[Queue] JDK Queue Queue:队列接口,对于数据的存取,提供了两种方式,一种失败会抛出异常,另一种则返回null或者false. 抛出异常的接口:add,remove ...
- JDK Collection 源码分析(1)—— Collection
JDK Collection JDK Collection作为一个最顶层的接口(root interface),JDK并不提供该接口的直接实现,而是通过更加具体的子接口(sub interface ...
- [源码分析]LinkedHashMap
一个键有序的 HashMap 可以将 LinkedHashMap 理解为 LinkList + HashMap,所以研究LinkedHashMap之前要先看HashMap代码.这里不再赘述.其实L ...
- JDK 源码分析(4)—— HashMap/LinkedHashMap/Hashtable
JDK 源码分析(4)-- HashMap/LinkedHashMap/Hashtable HashMap HashMap采用的是哈希算法+链表冲突解决,table的大小永远为2次幂,因为在初始化的时 ...
- JDK源码分析(6)之 LinkedHashMap 相关
LinkedHashMap实质是HashMap+LinkedList,提供了顺序访问的功能:所以在看这篇博客之前最好先看一下我之前的两篇博客,HashMap 相关 和 LinkedList 相关: 一 ...
- JDK(六)JDK1.8源码分析【集合】LinkedHashMap
本文转载自joemsu,原文连接 [JDK1.8]JDK1.8集合源码阅读——LinkedHashMap LinkedHashMap的数据结构 可以从上图中看到,LinkedHashMap数据结构相比 ...
随机推荐
- Python自学day-5
电影推荐: 阿甘正传 辛德勒名单 肖申克的救赎 勇敢的心 角斗士 美国丽人 教父 指环王 钢琴师 血钻 战争之王 ...
- 阅读HashMap——jdk7时遇到的问题记录
今天看hashMapJDK7版,水很深,看的也痛苦~推一个博主:http://www.cnblogs.com/xrq730/ 看了源码,才发现自己基础真的很薄弱,虽然当初也是下了很多的经历,但是毕竟大 ...
- putty秘钥转换成xhell支持的格式
使用XShell导入KEY的时候报“Failed to import the user key!”错误 这个错误表明导入的private key文件不是XShell所支持的,有三种可能: 将Publi ...
- JDK源码分析系列02---ArrayList和LinkList
ArrayList和LinkList的源码分析 概要 ArrayList和LinkList是常用的存储结构,不看源码先分析字面意思,Array意思是数组,可知其底层是用数组实现的,Link意思是链接, ...
- 从同步原语看非阻塞同步以及Java中的应用
非阻塞同步:基于冲突检测的乐观并发策略,通俗讲就是先进行操作,如果没有其他线程争用共享数据,那操作就成功了,如果争用数据有冲突那就采用其他的补偿措施(最常见的就是不断重试直到成功),这种乐观的并发策略 ...
- Codeforces Gym100962J:Jimi Hendrix(树型DP)
http://codeforces.com/gym/100962/attachments 题意:有一个n个节点的字母树,给出n-1条边的信息,代表边上有一个字母,然后给出长度为m的字符串,问是否能在这 ...
- Ural 2070:Interesting Numbers(思维)
http://acm.timus.ru/problem.aspx?space=1&num=2070 题意:A认为如果某个数为质数的话,该数字是有趣的.B认为如果某个数它分解得到的因子数目是素数 ...
- websocket实现群聊和单聊(转)
昨日内容回顾 1.Flask路由 1.endpoint="user" # 反向url地址 2.url_address = url_for("user") 3.m ...
- SpringBoot整合Swagger和Actuator
前言 本篇文章主要介绍的是SpringBoot整合Swagger(API文档生成框架)和SpringBoot整合Actuator(项目监控)使用教程. SpringBoot整合Swagger 说明:如 ...
- windows软件卸载工具Geek Uninstaller免安装版
曾经一个问题一直困扰这我,就是每次在卸载软件的时候都卸载不干净,卸载完后会有遗留文件夹,每次都要手动删,还有注册表也不干净,让我很是难受,直到有一天发现了一个卸载神器Geek Uninstaller ...