算法复杂度O(logn)详解
一.O(logn)代码小证明
我们先来看下面一段代码:
int cnt = 1;
while (cnt < n)
{
cnt *= 2;
//时间复杂度为O(1)的程序步骤序列
}
由于cnt每次在乘以2之后都会更加逼近n,也就是说,在有x次后,cnt将会大于n从而跳出循环,所以\(2 ^ x = n\), 也就是\(x = log_2n\),所以这个循环的复杂度为O(logn)
二.典型时间复杂度
$c$ 常数
$logN$ 对数级
$log ^ 2N$ 对数平方根
$N$ 线性级
$NlogN$
$N ^ 2$ 平方级
$N ^ 3$ 立方级
$2 ^ N$ 指数级
由此我们可以得知,\(logN\)的算法效率是最高的
三.常见的\(logN\)算法
1.对分查找
- (int)BinarySearch:(NSArray *)originArray element:(int)element
{
int low, mid, high;
low = 0; high = (int)originArray.count - 1;
while (low <= high) {
mid = (low + high) / 2;
if ([originArray[mid] intValue] < element) {
low = mid + 1;
} else if ([originArray[mid] intValue] > element) {
high = mid -1;
} else {
return mid;
}
}
return -1;
}
2. 欧几里得算法
- (unsigned int)Gcd:(unsigned int)m n:(unsigned int)n
{
unsigned int Rem;
while (n > 0) {
Rem = m % n;
m = n;
n = Rem;
}
return m;
}
3.幂运算
- (long)Pow:(long)x n:(unsigned int)n
{
if (n == 0) {
return 1;
}
if (n == 1) {
return x;
}
if ([self isEven:n]) {
return [self Pow:x * x n:n / 2];
} else {
return [self Pow:x * x n:n / 2] * x;
}
}
- (BOOL)isEven:(unsigned int)n
{
if (n % 2 == 0) {
return YES;
} else {
return NO;
}
}
四.$$库里的log函数
在$$库里有log()函数和log2()函数
log()函数的底数默认为自然对数的底数e
log2()函数的底数很显然就是2咯qwq
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
//#define DEBUG(x) cerr << #x << "=" << x << endl
int main()
{
cout << log(M_E) << endl;
cout << log2(2) << endl;
return 0;
}
然后我们就会得到
1
1
的结果
M_E代表的是自然对数的底数e
M_PI代表的是圆周率π
## 最后,也是最基本的最重要的
当题目的数据范围达到了$10^{18}$的时候,很显然就要用O(logn)的算法或数据结构了\]
算法复杂度O(logn)详解的更多相关文章
- 二分算法题目训练(二)——Exams详解
CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...
- "二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- Java经典算法四十例编程详解+程序实例
JAVA经典算法40例 [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程 ...
- 【转】九大排序算法-C语言实现及详解
概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大, ...
- spfa算法及判负环详解
spfa (Shortest Path Faster Algorithm) 是一种单源最短路径的算法,基于Bellman-Ford算法上由队列优化实现. 什么是Bellman_Ford,百度内 ...
- KMP(梅开三度之数据结构详解版
前言 KMP算法是一种字符串匹配算法,其重中之重是next数组的构建,其代码的简洁与神奇使其广受关注. 但不难发现,acm中学到的KMP和数据结构里面学到的KMP并不一样o(︶︿︶)o 之前我写过ac ...
- Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
随机推荐
- try catch在for循环外面还是里面
static void Main(string[] args) { //将异常写在循环外,出现异常循环终止 try { Console.WriteLine("抛出异常不输出"); ...
- Spring Boot 的静态资源处理
做web开发的时候,我们往往会有很多静态资源,如html.图片.css等.那如何向前端返回静态资源呢?以前做过web开发的同学应该知道,我们以前创建的web工程下面会有一个webapp的目录,我们只要 ...
- JS 算数
JS 算数 Math(算数)对象的作用是:执行常见的算数任务. random() 来返回 0 到 1 之间的随机数. max() 来返回两个给定的数中的较大的数.(在 ECMASCript v3 之前 ...
- ORA-27468: ""."" is locked by another process
You have a scheduler job that generated an error. When the error occurred, you attempted to disable ...
- Sqlite—数据库管理与表管理
数据库管理 创建数据库,创建完成之后自动进入 [root@localhost ~]# sqlite3 /www/wwwroot/task.db 使用数据库,如果 /www/wwwroot 路径下面没有 ...
- Linux防火墙常用命令
Centos7 查看防火墙状态 sudo firewall-cmd --state 输出running则表示防火墙开启,反之则是关闭,也可以使用下面命令进行查询 sudo systemctl stat ...
- 选择IT公司的雇主提问
做为IT从业人员,我们去一家公司时,判断一家公司的专业性时,可以通过以下提问获得反馈: 技术问题 1.这个项目使用了哪些技术(语言,框架,库)?2.应用程序是一体化架构还是微服务架构?3.采用了哪些设 ...
- Mac中创建一个OpenGL项目
配置: OS X10.10 + Xcode 6.0 一.基本步骤 新建一个命令窗口项目 更改目标设备版本号为 OS X 8.0 添加库文件 GLUT.framework 和 OpenGL.framew ...
- 解决Android Screen Monitor在android8.0及以上系统报错:"E/Screenshot: Unsupported protocol: 2"
1.打开命令窗口,切换到 asm.jar 所在目录,执行 java -jar asm.jar,正常情况下打开后连接上设备会显示出画面 2.但是在android8.0以上系统该asm.jar包就无法正常 ...
- log4j日志打印的配置文件简单使用
log4j.properties #将等级为DEBUG的日志信息输出到console和file这两个目的地,console和file的定义在下面的代码 log4j.rootLogger=DEBUG,c ...