前言

Flink三种运行方式:Local、Standalone、On Yarn。成功部署后分别用Scala和Java实现wordcount

环境

版本:Flink 1.6.2

集群环境:Hadoop2.6

开发工具: IntelliJ IDEA

一.Local模式

解压:tar -zxvf flink-1.6.2-bin-hadoop26-scala_2.11.tgz

cd flink-1.6.2

启动:./bin/start-cluster.sh

停止:./bin/stop-cluster.sh

可以通过master:8081监控集群状态

二.Standalone模式

集群安装

1:修改conf/flink-conf.yaml

jobmanager.rpc.address: hadoop100

2:修改conf/slaves

hadoop101

hadoop102

3:拷贝到其他节点

scp -rq /usr/local/flink-1.6.2 hadoop101:/usr/local

scp -rq /usr/local/flink-1.6.2 hadoop102:/usr/local

4:在hadoop100(master)节点启动

bin/start-cluster.sh

5:访问http://hadoop100:8081

三.Flink On Yarn模式

On Yarn实现逻辑


##### 第一种【yarn-session.sh(开辟资源)+flink run(提交任务)】
启动一个一直运行的flink集群
./bin/yarn-session.sh -n 2 -jm 1024 -tm 1024 [-d]
附着到一个已存在的flink yarn session
./bin/yarn-session.sh -id application_1463870264508_0029
执行任务
./bin/flink run ./examples/batch/WordCount.jar -input hdfs://hadoop100:9000/LICENSE -output hdfs://hadoop100:9000/wordcount-result.txt
停止任务 【web界面或者命令行执行cancel命令】
##### 第二种【flink run -m yarn-cluster(开辟资源+提交任务)】
启动集群,执行任务
./bin/flink run -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024 ./examples/batch/WordCount.jar
注意:client端必须要设置YARN_CONF_DIR或者HADOOP_CONF_DIR或者HADOOP_HOME环境变量,通过这个环境变量来读取YARN和HDFS的配置信息,否则启动会失败

四.WordCount

代码

Scala实现代码

package com.skyell

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time /**
* 滑动窗口计算
*
* 每隔1秒统计最近2秒数据,打印到控制台
*/
object SocketWindowWordCountScala {
def main(args: Array[String]): Unit = { // 获取socket端口号
val port: Int = try{
ParameterTool.fromArgs(args).getInt("port")
}catch {
case e: Exception => {
System.err.println("No port set use default port 9002--scala")
}
9002
} // 获取运行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment // 连接socket获取数据
val text = env.socketTextStream("master", port, '\n') //添加隐式转换,否则会报错
import org.apache.flink.api.scala._ // 解析数据(把数据打平),分组,窗口计算,并且聚合求sum
val windowCount = text.flatMap(line => line.split("\\s"))
.map(w => WordWithCount(w, 1))
.keyBy("word") // 针对相同word进行分组
.timeWindow(Time.seconds(2), Time.seconds(1))// 窗口时间函数
.sum("count") windowCount.print().setParallelism(1) // 设置并行度为1 env.execute("Socket window count") }
// case 定义的类可以直接调用,不用new
case class WordWithCount(word:String,count: Long) }

Java实现代码

package com.skyell;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector; public class BatchWordCountJava {
public static void main(String[] args) throws Exception{ String inputPath = "D:\\DATA\\file";
String outPath = "D:\\DATA\\result"; // 获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// 读取本地文件中内容
DataSource<String> text = env.readTextFile(inputPath);
// groupBy(0):从0聚合 sum(1):以第二个字段加和计算
DataSet<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).groupBy(0).sum(1); counts.writeAsCsv(outPath, "\n", " ").setParallelism(1); env.execute("batch word count");
} public static class Tokenizer implements FlatMapFunction<String, Tuple2<String,Integer>>{
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\\W+");
for (String token: tokens
) {
if(token.length()>0){
out.collect(new Tuple2<String, Integer>(token, 1));
}
}
}
}
}

pom依赖配置

    <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.6.2</version>
<scope>provided</scope>
</dependency>

[Flink]Flink1.6三种运行模式安装部署以及实现WordCount的更多相关文章

  1. hadoop记录-[Flink]Flink三种运行模式安装部署以及实现WordCount(转载)

    [Flink]Flink三种运行模式安装部署以及实现WordCount 前言 Flink三种运行方式:Local.Standalone.On Yarn.成功部署后分别用Scala和Java实现word ...

  2. ubuntu上Hadoop三种运行模式的部署

    Hadoop集群支持三种运行模式:单机模式.伪分布式模式,全分布式模式,下面介绍下在Ubuntu下的部署 (1)单机模式 默认情况下,Hadoop被配置成一个以非分布式模式运行的独立JAVA进程,适合 ...

  3. Tomcat Connector的三种运行模式

    详情参考: http://tomcat.apache.org/tomcat-7.0-doc/apr.html http://www.365mini.com/page/tomcat-connector- ...

  4. 【Tomcat】Tomcat Connector的三种运行模式【bio、nio、apr】

    Tomcat Connector(Tomcat连接器)有bio.nio.apr三种运行模式 bio bio(blocking I/O,阻塞式I/O操作),表示Tomcat使用的是传统的Java I/O ...

  5. PHP语言学习之php-fpm 三种运行模式

    本文主要向大家介绍了PHP语言学习之php-fpm 三种运行模式,通过具体的内容向大家展示,希望对大家学习php语言有所帮助. php-fpm配置 配置文件:php-fpm.conf 开启慢日志功能的 ...

  6. Tomcat Connector三种运行模式(BIO, NIO, APR)的比较和优化

    Tomcat Connector的三种不同的运行模式性能相差很大,有人测试过的结果如下: 这三种模式的不同之处如下: BIO: 一个线程处理一个请求.缺点:并发量高时,线程数较多,浪费资源. Tomc ...

  7. Tomcat Connector(BIO, NIO, APR)三种运行模式(转)

    Tomcat支持三种接收请求的处理方式:BIO.NIO.APR . BIO 阻塞式I/O操作即使用的是传统 I/O操作,Tomcat7以下版本默认情况下是以BIO模式运行的,由于每个请求都要创建一个线 ...

  8. php-fpm 三种运行模式

    php-fpm配置 配置文件:php-fpm.conf 开启慢日志功能的: slowlog = /usr/local/var/log/php-fpm.log.slowrequest_slowlog_t ...

  9. python编程(python开发的三种运行模式)【转】

    转自:http://blog.csdn.net/feixiaoxing/article/details/53980886 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 单循环 ...

随机推荐

  1. MongoDB 学习笔记之 游标

    游标: 游标是查询的接口,可以逐条读取. var mycursor = db.bar.find(); mycursor.hasNext(); mycursor.next(); 示例: var mycu ...

  2. python编程基础之二十四

    函数: def 函数名([参数1],[参数2],[参数3], ... ,[参数n]): 函数体代码 函数名命名规则:同标识符命名相同,但是多了一点,不要和系统函数重名,其实所有命名都是一样只要符合标识 ...

  3. Huffman树及其编解码

    Huffman树--编解码 介绍:   Huffman树可以根据输入的字符串中某个字符出现的次数来给某个字符设定一个权值,然后可以根据权值的大小给一个给定的字符串编码,或者对一串编码进行解码,可以用于 ...

  4. python 报错TypeError: 'range' object does not support item assignment,解决方法

    贴问题 nums = range(5)#range is a built-in function that creates a list of integers print(nums)#prints ...

  5. Django实现WebSSH操作Kubernetes Pod

    优秀的系统都是根据反馈逐渐完善出来的 上篇文章介绍了我们为了应对安全和多分支频繁测试的问题而开发了一套Alodi系统,Alodi可以通过一个按钮快速构建一套测试环境,生成一个临时访问地址,详细信息可以 ...

  6. JVM系列一:JVM内存模型

    今天起开始总结JVM.自己也看了好多JVM相关的知识,在此做个总结. 打算分为五个部分来讲:JVM内存模型.JVM类加载机制.JVM垃圾回收机制.JVM启动参数设置及优化.JVM其他相关. 今天首先来 ...

  7. django根据已有数据库表生成model类

    django根据已有数据库表生成model类 创建一个Django项目 django-admin startproject 'xxxx' 修改setting文件,在setting里面设置你要连接的数据 ...

  8. drf框架中jwt认证,以及自定义jwt认证

    0909自我总结 drf框架中jwt 一.模块的安装 官方:http://getblimp.github.io/django-rest-framework-jwt/ 他是个第三方的开源项目 安装:pi ...

  9. VMware15.5版本下安装Windows_Server_2008_R2

    一.新建虚拟机 第一步:打开VMware15.5虚拟机,在欢迎界面点击新建虚拟机: 第二步:选择典型(推荐)选项-->适用于新手,单击下一步: 第三步:选定最后一项稍后安装操作系统,单击下一步: ...

  10. 渗透测试-基于白名单执行payload--Regsvr32

    复现亮神课程 基于白名单执行payload--Regsvr32 0x01 Regsvr32 Regsvr32命令用于注册COM组件,是 Windows 系统提供的用来向系统注册控件或者卸载控件的命令, ...