题目描述

约翰开车来到镇上,他要带K吨饲料回家。运送饲料是需要花钱的,如果他的车上有X吨饲料,每公里就要花费X^2元,开车D公里就需要D* X^2元。约翰可以从N家商店购买饲料,所有商店都在一个坐标轴上,第i家店的位置是Xi,饲料的售价为每吨Ci元,库存为Fi。  
约翰从坐标X=O开始沿坐标轴正方向前进,他家在坐标X=E上。为了带K吨饲料回家, 约翰最少的花费是多少呢? 
假设所有商店的库存之和不会少于K。  
举个例子,假设有三家商店,情况如下所示:  
坐标 X=1 X=3 X=4 E=5  
库存 1     1     1  
售价 1     2     2  
如果K=2,约翰的最优选择是在离家较近的两家商店购买饲料,则花在路上的钱是1+4=5,花在商店的钱是2+2=4,共需要9元。

思路

$dp[i][j]$表示到了$i$带有$j$吨饲料的最少花费。(注意此时i商店还没有买)

在每个商店我们可以选择买或者不买,枚举$i-1$之前带有的饲料$k$,那么$dp[i]][j]=min(dp[i-1][k]+j*j*(d[i]-d[i-1])+(j-k)*c[i])$

整理一下:$dp[i][j]=min(dp[i-1][k]-k*c[i]+j*j*(d[i]-d[i-1])+j*c[i])$

单调队列维护使dp[i-1][k]最小的 k转移即可。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int K=;
const int N=;
LL f[N][K];
int k,hm,n;
struct FARM
{
LL x,v,w;
}a[N];
LL d[N]; bool cmp(FARM a,FARM b)
{
return a.x<b.x;
} int main()
{
scanf("%d%d%d",&k,&hm,&n);
for(int i=;i<=n;i++)scanf("%lld%lld%lld",&a[i].x,&a[i].v,&a[i].w);
sort(a+,a++n,cmp);
n++;a[n]=(FARM){hm,,};
for(int i=;i<=n;i++)
d[i]=a[i].x-a[i-].x;
memset(f,0x3f,sizeof(f));
f[][]=;
for(int i=;i<=n;i++)
{
deque<int>q;
for(int j=;j<=k;j++)
{
while(!q.empty()&&j-q.front()>a[i-].v)q.pop_front();
while(!q.empty()&&f[i-][q.back()]-a[i-].w*q.back()>=f[i-][j]-a[i-].w*j)
q.pop_back();
q.push_back(j);
int p=q.front();
if(!q.empty())f[i][j]=f[i-][p]-a[i-].w*p+a[i-].w*j+j*j*d[i]; }
}
cout<<f[n][k];
}

卖饲料——单调队列优化dp的更多相关文章

  1. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  2. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  3. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  4. 【单调队列优化dp】HDU 3401 Trade

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 [题意] 知道之后n天的股票买卖价格(api,bpi),以及每天股票买卖数量上限(asi,bsi),问他最 ...

  5. 单调队列优化DP——习题收集

    前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...

  6. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  7. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  8. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  9. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

随机推荐

  1. A-07 前向分步算法

    目录 前向分步算法 一.前向分步算法引入 二.前向分步算法详解 2.1 加法模型 2.2 加法模型目标函数优化问题 三.前向分步算法流程 3.1 输入 3.2 输出 3.3 流程 更新.更全的< ...

  2. e课表项目第二次冲刺周期第八天

    昨天完成了什么? 昨天,我们组商量讨论了二层界面的设计,添加课程所需要的信息大概有:课程名称.教室.任课教师.上课时间.类型(单周.双周.单双周)以及备注等等.然后,我们通过界面的UI设计,让我们软件 ...

  3. 构造函数语义学——Copy Constructor 篇

    构造函数语义学--Copy Constructor 篇 本文主要介绍<深度探索 C++对象模型>之<构造函数语义学>中的 Copy Constructor 构造函数的调用时机 ...

  4. Bran的内核开发教程(bkerndev)-05 打印到屏幕

    打印到屏幕   现在, 我们需要尝试打印到屏幕上.为此, 我们需要管理屏幕滚动, 如果能允许使用不同的颜色就更好了.好在VGA视频卡为我们提供了一片内存空间, 允许同时写入属性字节和字符字节对, 可以 ...

  5. Windows常用操作

    目录 查询IP地址 常用快捷键 显示文件后缀名 查询IP地址 1.进入到dos界面 2.输入命令: ipconfig 常用快捷键 快捷键 作用 win+E 打开计算机 win+R 打开运行 win+R ...

  6. webapck 按需加载及版本控制问题

    在启用webpack的懒加载(按需加载)后,我们会遇到要解决缓存的问题. 解决缓存问题有几种方法: 第一种就是加个hash值.便每次修改后所编译后的文件名都不一样.这样能达到预期解决缓存的效果.具体设 ...

  7. 线段树区间取max区间查询

    要线段树资瓷区间max和询问区间和. 设要把$[L, R]$对mx取max. 我们可以在线段树上二分出小于mx的区间然后变成区间修改了. 具体实现是,维护区间最小值和区间最大值,我们递归进入一个区间, ...

  8. 详解JavaScript调用栈、尾递归和手动优化

    调用栈(Call Stack) 调用栈(Call Stack)是一个基本的计算机概念,这里引入一个概念:栈帧. 栈帧是指为一个函数调用单独分配的那部分栈空间. 当运行的程序从当前函数调用另外一个函数时 ...

  9. 是可忍孰不可忍!!nodepad++作者台独分子,恶毒言论!!!

    本来用了两年这个软件吧,不带任何情感的,单纯辅助工具.直到今天,在GitHub上,发现了这个作者以及一些同党都是一群尼玛生在中国骂中国的狗币. https://github.com/notepad-p ...

  10. Apache POI使用指南(HSSFWorkbook生成excel)

    说 明: 官网:http://poi.apache.org/ 由于poi的功能多样,可以生成ppt.word.excel.......,本文就以生成excel为例进行说明,相信聪明的你一定能举一反三 ...