堆排序基本介绍

1、堆排序是利用这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。

2、堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。

3、每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

4、大顶堆举例说明

5、小顶堆举例说明

小顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应第几个节点,i从0开始编号

6、一般升序采用大顶堆,降序采用小顶堆

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆
  2. 此时,整个序列的最大值就是堆顶的根节点。
  3. 将其与末尾元素进行交换,此时末尾就为最大值。
  4. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

堆排序步骤图解说明

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

1) .假设给定无序序列结构如下

2).此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

3) .找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

4) 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

此时,我们就将一个无序序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

1) .将堆顶元素9和末尾元素4进行交换

2) .重新调整结构,使其继续满足堆定义

3) .再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

4) 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

再简单总结下堆排序的基本思路:

1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

堆排序代码实现

要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序.

 public class HeapSort {

     public static void main(String[] args) {
//要求将数组进行升序排序
//int arr[] = {4, 6, 8, 5, 9};
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
} System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str); heapSort(arr); Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("排序后=" + Arrays.toString(arr));
} //编写一个堆排序的方法
public static void heapSort(int arr[]) {
int temp = 0;
System.out.println("堆排序!!"); // //分步完成
// adjustHeap(arr, 1, arr.length);
// System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
// adjustHeap(arr, 0, arr.length);
// System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4 //完成我们最终代码
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for(int i = arr.length / 2 -1; i >=0; i--) {
adjustHeap(arr, i, arr.length);
} /*
* 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
   3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for(int j = arr.length-1;j >0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
} //System.out.println("数组=" + Arrays.toString(arr)); } //将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int lenght) { int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
//1. k = i * 2 + 1 k 是 i结点的左子结点
for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
k++; // k 指向右子结点
}
if(arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!! i 指向 k,继续循环比较
} else {
break;//!
}
}
//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
} }

代码

堆排序的速度非常快,在我的机器上 8百万数据 3 秒左右。O(nlogn)

数据结构与算法---堆排序(Heap sort)的更多相关文章

  1. 算法----堆排序(heap sort)

    堆排序是利用堆进行排序的高效算法,其能实现O(NlogN)的排序时间复杂度,详细算法分析能够点击堆排序算法时间复杂度分析. 算法实现: 调整堆: void sort::sink(int* a, con ...

  2. Python入门篇-数据结构堆排序Heap Sort

    Python入门篇-数据结构堆排序Heap Sort 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.堆Heap 堆是一个完全二叉树 每个非叶子结点都要大于或者等于其左右孩子结点 ...

  3. 数据结构 - 堆排序(heap sort) 具体解释 及 代码(C++)

    堆排序(heap sort) 具体解释 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包括两个步骤: 第一步: 是建立大顶堆(从大到小排 ...

  4. 堆排序 Heap Sort

    堆排序虽然叫heap sort,但是和内存上的那个heap并没有实际关系.算法上,堆排序一般使用数组的形式来实现,即binary heap. 我们可以将堆排序所使用的堆int[] heap视为一个完全 ...

  5. 小小c#算法题 - 7 - 堆排序 (Heap Sort)

    在讨论堆排序之前,我们先来讨论一下另外一种排序算法——插入排序.插入排序的逻辑相当简单,先遍历一遍数组找到最小值,然后将这个最小值跟第一个元素交换.然后遍历第一个元素之后的n-1个元素,得到这n-1个 ...

  6. 数据结构与算法(6) -- heap

    binary heap就是一种complete binary tree(完全二叉树).也就是说,整棵binary tree除了最底层的叶节点之外,都是满的.而最底层的叶节点由左至右又不得有空隙. 以上 ...

  7. 堆排序Heap sort

    堆排序有点小复杂,分成三块 第一块,什么是堆,什么是最大堆 第二块,怎么将堆调整为最大堆,这部分是重点 第三块,堆排序介绍 第一块,什么是堆,什么是最大堆 什么是堆 这里的堆(二叉堆),指得不是堆栈的 ...

  8. Java实现---堆排序 Heap Sort

    堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 堆的定义 n个元素的序列{k1,k2,…,kn}当且仅当满足下列关 ...

  9. java数据结构和算法------堆排序

    package iYou.neugle.sort; public class Heap_sort { public static void HeapSort(double[] array) { for ...

随机推荐

  1. js中的scrollTop、offsetTop、clientTop

    scrollHeight:获取对象可滚动的高度. scrollWidth:获取对象可滚动的宽度. scrollTop:获取对象最顶端与对象可见区域最顶端的距离. scrollLeft:获取对象左边界与 ...

  2. 微信小程序把玩(十二)text组件

    原文:微信小程序把玩(十二)text组件 通常文本设置要不在wxml中设置,再要不就是通过weml绑定在js中设置文字. wxml <view > <text>我是文本组件&l ...

  3. C#调用Microsoft.DirectX.DirectSound.dll时出错

    1.修改工程的编译选项.我的开发运行环境是Windows 10 x64系统.需要修改一下工程的编译选项,把AnyCPU改成x86的. 未能加载文件或程序集“Microsoft.DirectX.Dire ...

  4. uwp开发:数据绑定——值转换器 的简单使用

    原文:uwp开发:数据绑定--值转换器 的简单使用 今天,我在做最近正在开发的“简影”uwp应用时遇到一个问题,其中有个栏目,叫做“画报”,是分组显示一组一组的 图片,每组图片在界面上只显示9个,点击 ...

  5. SQL Server中 SET 和 SELECT 赋值有什么区别?

    SQL Server 中对已经定义的变量赋值的方式用两种,分别是 SET 和 SELECT.对于这两种方式的区别,SQL Server 联机丛书中已经有详细的说明,但很多时候我们并没有注意,其实这两种 ...

  6. 了解Service

    多线程编程: 线程的基本用法: 1. class MyThread extends Thread{ @Override public void run() { //处理具体逻辑 } } new MyT ...

  7. 邮件带附件和html格式

    1. 发送有附件的邮件需要添加一个附件类Attachment,这个附件可以为文件和图片: Attachment attach = new Attachment(“文件路径”");//文件 A ...

  8. UI设计师必收!同行总结可即刻上手的iOS规范参考

    分享 <关于我> 分享  [中文纪录片]互联网时代                 http://pan.baidu.com/s/1qWkJfcS 分享 <HTML开发MacOSAp ...

  9. delphi的Socket(有两种分别继承TObject和TComponent的方式)

    在Delphi中,对于Windows中的Socket进行了有效的封装.在Delphi中,按其继承关系,可以分层两类:一.TComponent--TAbstractSocket--TCustomSock ...

  10. Qt实现网络播放器

        写了这么多的博客,关于网络的还不算多,经常有人询问一些关于网络传输.制作在线试听及下载音乐.构造及解析数据等的一些问题,今天就在这里一并讲解.   网络操作:     主要涉及:QNetwor ...