1804: 有向无环图

Submit Page   Summary   Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 716     Solved: 298


Description

Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始、点 v 结束的路径)。
为了方便,点用 1,2,…,n 编号。 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道
 
 
除以 (109+7) 的余数。
其中,ai,bj 是给定的数列。
 

Input

输入包含不超过 15 组数据。
每组数据的第一行包含两个整数 n,m (1≤n,m≤105).
接下来 n 行的第 i 行包含两个整数 ai,bi (0≤ai,bi≤109).
最后 m 行的第 i 行包含两个整数 ui,vi,代表一条从点 ui 到 vi 的边 (1≤ui,vi≤n)。
 

Output

对于每组数据,输出一个整数表示要求的值。

Sample Input

3 3
1 1
1 1
1 1
1 2
1 3
2 3
2 2
1 0
0 2
1 2
1 2
2 1
500000000 0
0 500000000
1 2

Sample Output

4
4
250000014

Hint

Source

湖南省第十二届大学生计算机程序设计竞赛

 
先将每个点i对应的count(i,j)*bj算出来然后乘ai,累加就是答案,注意这里要类似拓扑排序那样,不过要倒着做,避免后效性
参考博客 http://blog.csdn.net/qq_21057881/article/details/52431139
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
const int maxn = 1e5+;
const int mod = 1e9+;
vector<int>e[maxn];
int a[maxn],b[maxn],d[maxn];
int ans[maxn];
int main(){
int n,m;
while(cin >> n >> m){
for(int i=;i<=n;i++){
e[i].clear();
}
memset(d,,sizeof(d));
memset(ans,,sizeof(ans));
for(int i=;i<=n;i++){
cin >> a[i] >> b[i];
}
for(int i=;i<=m;i++){
int u,v;
cin >> u >> v;
e[v].push_back(u);
d[u]++;//终点为u的路径的条数
}
queue<int> q;
for(int i=;i<=n;i++){
if(d[i] == ){//把终点为i的路径数为0的点加入队列
q.push(i);
}
}
while(!q.empty()){
int v = q.front();
q.pop();
for(int i=;i<e[v].size();i++){
int u = e[v][i];
ans[u] = (ans[u] + (ans[v] + b[v])%mod)%mod;
//之所以是加b[v],是因为乘是相当于整体而言,一条就是1*b[v]相当于加b[v]
d[u]--;
if(d[u] == ){
q.push(u);
}
}
}
LL res = ;
for(int i=;i<=n;i++){
res = (res + 1LL*ans[i]*a[i]%mod)%mod;
}
cout << res << endl;
}
return ;
}

CSU 1804: 有向无环图 拓扑排序 图论的更多相关文章

  1. CSU 1804 - 有向无环图 - [(类似于)树形DP]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...

  2. 图->有向无环图->拓扑排序

    文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...

  3. CSU 1804: 有向无环图(拓扑排序)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...

  4. csu 1804 有向无环图

    题目地址 分析:从复杂度来看,一定不可能是枚举和来计算.1e5的规模来看,应该是复杂度比较合适. 我是这么想的,对于三个点,假设1->2有a种走法,2->3有b种走法.那么1->3应 ...

  5. 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP

    1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 187  Solved: 80[Submit][Status][Web Board ...

  6. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

  7. csu oj 1804: 有向无环图 (dfs回溯)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...

  8. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  9. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

随机推荐

  1. UE4 打包详细流程

    这两天试着把之前做的一个UE4项目在安卓机上运行下,于是乎有了下面的一个打包血泪史. 首先呢,肯定是下载好了UE的源码了,我用的是4.18. 安装步骤可以先参考下官方的教程http://api.unr ...

  2. Mysql之锁、事务绝版详解---干货!

    一 锁的分类及特性 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则.对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能 ...

  3. Netty源码分析-- FastThreadLocal分析(十)

    上节讲过了ThreadLocal的源码,这一节我们来看下FastThreadLocal.这个我觉得要比ThreadLocal要简单,因为缺少了对于Entry的清理和整理工作,所以ThreadLocal ...

  4. java课堂 动手动脑3

    (1) 该函数没有赋初值再就是如果类提供一个自定义的构造方法,将导致系统不在提供默认的构造方法. (2) public class test { public static void main(Str ...

  5. weblogic10.3.6漏洞修改方案

    1.CVE-2018-2628漏洞 CVE-2018-2628漏洞利用的第一步是与weblogic服务器开放在服务端口上的T3服务建立socket连接,可通过控制T3协议的访问来临时阻断攻击行为. W ...

  6. 给你的SpringBoot做埋点监控--JVM应用度量框架Micrometer

    JVM应用度量框架Micrometer实战 前提 spring-actuator做度量统计收集,使用Prometheus(普罗米修斯)进行数据收集,Grafana(增强ui)进行数据展示,用于监控生成 ...

  7. 正确使用sqlcipher for Android

    android-database-sqlcipher是基于SQLCipher的数据库加密框架,支持android4到android9,经常用来对android的SqlLite进行加密,现在支持Grad ...

  8. mysql5.7绿色版配置以及找不到 mysql服务问题解决

    一.下载软件 1. 进入mysql官网,登陆自己的Oracle账号(没有账号的自己注册一个),下载Mysql-5.7.17,下载地址:http://dev.mysql.com/downloads/my ...

  9. 基于vue手写tree插件那点事

    目录 iview提供的控件 手写控件 手写控件扩展 手写控件总结 # 加入战队 微信公众号 主题 Tree树形控件在前端开发中必不可少,对于数据的展示现在网站大都采取树形展示.因为大数据全部展示出来对 ...

  10. 微信小程序项目总结-记账小程序(包括后端)

    一.小程序部分 这是理财系统的前端,江苏海洋大学微信小程序比赛,最后获得了一等奖 GitHub:https://github.com/GeorgeLeoo/finance 1. 项目描述 (1). 此 ...