1804: 有向无环图

Submit Page   Summary   Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 716     Solved: 298


Description

Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始、点 v 结束的路径)。
为了方便,点用 1,2,…,n 编号。 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道
 
 
除以 (109+7) 的余数。
其中,ai,bj 是给定的数列。
 

Input

输入包含不超过 15 组数据。
每组数据的第一行包含两个整数 n,m (1≤n,m≤105).
接下来 n 行的第 i 行包含两个整数 ai,bi (0≤ai,bi≤109).
最后 m 行的第 i 行包含两个整数 ui,vi,代表一条从点 ui 到 vi 的边 (1≤ui,vi≤n)。
 

Output

对于每组数据,输出一个整数表示要求的值。

Sample Input

3 3
1 1
1 1
1 1
1 2
1 3
2 3
2 2
1 0
0 2
1 2
1 2
2 1
500000000 0
0 500000000
1 2

Sample Output

4
4
250000014

Hint

Source

湖南省第十二届大学生计算机程序设计竞赛

 
先将每个点i对应的count(i,j)*bj算出来然后乘ai,累加就是答案,注意这里要类似拓扑排序那样,不过要倒着做,避免后效性
参考博客 http://blog.csdn.net/qq_21057881/article/details/52431139
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
const int maxn = 1e5+;
const int mod = 1e9+;
vector<int>e[maxn];
int a[maxn],b[maxn],d[maxn];
int ans[maxn];
int main(){
int n,m;
while(cin >> n >> m){
for(int i=;i<=n;i++){
e[i].clear();
}
memset(d,,sizeof(d));
memset(ans,,sizeof(ans));
for(int i=;i<=n;i++){
cin >> a[i] >> b[i];
}
for(int i=;i<=m;i++){
int u,v;
cin >> u >> v;
e[v].push_back(u);
d[u]++;//终点为u的路径的条数
}
queue<int> q;
for(int i=;i<=n;i++){
if(d[i] == ){//把终点为i的路径数为0的点加入队列
q.push(i);
}
}
while(!q.empty()){
int v = q.front();
q.pop();
for(int i=;i<e[v].size();i++){
int u = e[v][i];
ans[u] = (ans[u] + (ans[v] + b[v])%mod)%mod;
//之所以是加b[v],是因为乘是相当于整体而言,一条就是1*b[v]相当于加b[v]
d[u]--;
if(d[u] == ){
q.push(u);
}
}
}
LL res = ;
for(int i=;i<=n;i++){
res = (res + 1LL*ans[i]*a[i]%mod)%mod;
}
cout << res << endl;
}
return ;
}

CSU 1804: 有向无环图 拓扑排序 图论的更多相关文章

  1. CSU 1804 - 有向无环图 - [(类似于)树形DP]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...

  2. 图->有向无环图->拓扑排序

    文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...

  3. CSU 1804: 有向无环图(拓扑排序)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在 ...

  4. csu 1804 有向无环图

    题目地址 分析:从复杂度来看,一定不可能是枚举和来计算.1e5的规模来看,应该是复杂度比较合适. 我是这么想的,对于三个点,假设1->2有a种走法,2->3有b种走法.那么1->3应 ...

  5. 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP

    1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 187  Solved: 80[Submit][Status][Web Board ...

  6. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

  7. csu oj 1804: 有向无环图 (dfs回溯)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...

  8. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  9. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

随机推荐

  1. 自定义SWT控件一之自定义单选下拉框

    一.自定义下拉控件 自定义的下拉框,是自定义样式的,其中的下拉框使用的是独立的window,非复选框的下拉框双击单机其它区域或选择完之后,独立window构成的下拉框会自动消失. package co ...

  2. Docker入门学习笔记

    Docker 什么是Docker 虚拟化技术 在计算机中,虚拟化是一种资源管理技术,将计算机中的各种实体资源如:CPU.硬盘.内存等予以抽象.转换后呈现出来打破实体结构间的不可切割的障碍,使用户可以比 ...

  3. Linux基础用户管理

    一.用户管理 (一).用户和组的基本概念 Users and groups:. Every process (running program) on the system runs as a part ...

  4. 夯实Java基础(七)——Static关键字

    1.static介绍 static关键字一直是各大企业中面试常常会问到的问题,主要考察面试者的基础是否扎实,下面来介绍一下static关键字. Java中static表示“全局”或者“静态”的意思,可 ...

  5. 使用Arthas 获取Spring ApplicationContext还原问题现场

    ## 背景 最近来了个实习僧小弟,安排他实现对目标网站 连通性检测的小功能,简单讲就是将下边的shell 脚本换成Java 代码来实现 ``` 1#!/bin/bash 2URL="http ...

  6. 不用 Spring Security 可否?试试这个小而美的安全框架

    写在前面 在一款应用的整个生命周期,我们都会谈及该应用的数据安全问题.用户的合法性与数据的可见性是数据安全中非常重要的一部分.但是,一方面,不同的应用对于数据的合法性和可见性要求的维度与粒度都有所区别 ...

  7. Chrome 开发工具之 Memory

    开发过程中难免会遇到内存问题,emmm... 本文主要记录一下Chrome排查内存问题的面板,官网也有,但有些说明和例子跟不上新的版本了,也不够详细...   !!! 多图预警!!!    简单的内存 ...

  8. element ui 登录验证,路由守卫

    <template> <!-- el-form :label-position="labelPosition" 设置label的位置 :model 用来给表单设置 ...

  9. docker/kubernetes国内源/镜像源解决方式

    最近在使用kubeadm时,被各种连接不上搞到崩溃.费了很多力气,基本都解决了.这里统一整理了国内的一些镜像源,apt源,kubeadm源等,以便查阅. 国内镜像源 Azure China提供了目前用 ...

  10. python调用支付宝支付接口

    python调用支付宝支付接口详细示例—附带Django demo代码   项目演示: 一.输入金额 二.跳转到支付宝付款 三.支付成功 四.跳转回自己网站 在使用支付宝接口的前期准备: 1.支付宝公 ...