数据挖掘的十大算法

基本概念

1、数据预处理:处理成 用户ID,R ,F,M四个字段

2、调用KMeans算法 进行聚类 ,设定为8类

3、对数据进行拟合,训练模型  ,每个ID对应一个类别(0-7)

4、如何将分类好的数字标签,和RFM 模型中的客户类别匹配起来?

查看每个类别的中心点,用其构造Dataframe来代表整个数据集
查看每个类别的中心点:clf.cluster_centers_
"""分别计算每个属性值的中位数,代表整个属性的中位水平"""
rmd = r['R'].median()
fmd = r['F'].median()
mmd = r['M'].median()

然后对8行3列数据进行判断,对8类数据进行客户类别标签

5、对整个数据集贴上标签

标签0-7和客户类型一一对应

 数据集:

导入数据集到mysql数据库中

总共有940个独立消费数据

无监督算法:

K-Means 算法

K-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每
个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点
要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了
哪个类别。

引入模块

import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import pymysql

连接数据库:

conn = pymysql.connect(host='localhost',user='root',password='',db='db2',port=3306)
rfm = pd.read_sql('select * from consumption_data',con=conn)
conn.close()

查看详情:

rfm.info()

rfm.head()

"""选取RFM 三列"""
new_rfm = rfm.loc[:,['R','F','M']]
"""调用KMeans算法 进行聚类 ,设定为8类"""
clf = KMeans(n_clusters=8,random_state=0)
"""对数据进行拟合,训练模型"""
clf.fit(new_rfm)
"""查看一下分类的结果,返回的数组中每个数字对应了rfm中每一行"""
print(len(clf.labels_))
se = pd.Series(clf.labels_)
se.value_counts()
new_rfm['label']=clf.labels_
new_rfm.head()
"""如何将分类好的数字标签,和RFM 模型中的客户类别匹配起来?"""
"""查看每个类别的中心点,用其构造Dataframe来代表整个数据集"""
查看每个类别的中心点:clf.cluster_centers_

8行3列

r = pd.DataFrame(clf.cluster_centers_,columns=['R','F','M'])
print(r) 每个类别的中心点0-7共8类

"""分别计算每个属性值的中位数,代表整个属性的中位水平"""
rmd = r['R'].median()
fmd = r['F'].median()
mmd = r['M'].median()
cluster=[]
for i in range(len(r)):
if r.iloc[i,0] > rmd and r.iloc[i,1] >fmd and r.iloc[i,2] >mmd:
cluster.append('高价值客户')
elif r.iloc[i,0] < rmd and r.iloc[i,1] > fmd and r.iloc[i,2] >mmd:
cluster.append('重点保持客户')
elif r.iloc[i,0] > rmd and r.iloc[i,1] < fmd and r.iloc[i,2] >mmd:
cluster.append('重点发展客户')
elif r.iloc[i,0] < rmd and r.iloc[i,1] < fmd and r.iloc[i,2] > mmd:
cluster.append('重点挽留客户')
elif r.iloc[i,0] > rmd and r.iloc[i,1] > fmd and r.iloc[i,2] < mmd:
cluster.append('一般价值客户')
elif r.iloc[i,0] < rmd and r.iloc[i,1] > fmd and r.iloc[i,2] < mmd:
cluster.append('一般保持客户')
elif r.iloc[i,0] > rmd and r.iloc[i,1] < fmd and r.iloc[i,2] < mmd:
cluster.append('一般发展客户')
else:
cluster.append('潜在客户')

cluster

"""将贴好的标签,匹配到每一行数据"""
r['客户分类']=cluster

s = r.reset_index()
print(s)

new_rfm.head()

标签0-7和客户类型一一对应

对整个数据集贴上标签

# result = pd.merge(new_rfm,r['客户分类'],how='inner',left_on='label',right_index=True)# 用右表的索引做连接键
result = pd.merge(new_rfm,s[['index','客户分类']],how='inner',left_on='label',right_on='index') result.sort_index()

k-means实战-RFM客户价值分群的更多相关文章

  1. RFM客户价值分类

    # 自定义好的包,亲测可用 原数据和代码思想来自以下网址 # https://github.com/joaolcorreia/RFM-analysis import datetime as dt im ...

  2. 客户主题分析(tableau)—客户分群

    主要分析方面:客户合理分群 客户分群实现:使用聚类构建指标,需理解聚类的分析逻辑,需使用软件:tableau 聚类方法:选择3指标分别为购买总金额,客户购买次数.类平均购买价格(四类的平均购买价格,四 ...

  3. 数据分析之客户价值模型(RFM)技术总结

    作者 | leo 管理学中有一个重要概念那就是客户关系管理(CRM),它核心目的就是为了提高企业的核心竞争力,通过提高企业与客户间的交互,优化客户管理方式,从而实现吸引新客户.保留老客户以及将已有客户 ...

  4. Python使用RMF聚类分析客户价值

    投资机构或电商企业等积累的客户交易数据繁杂.需要根据用户的以往消费记录分析出不同用户群体的特征与价值,再针对不同群体提供不同的营销策略. 用户分析指标 根据美国数据库营销研究所Arthur Hughe ...

  5. 项目实战:负载均衡集群企业级应用实战—LVS详解

    目录 一.负载均衡集群介绍 二.lvs 的介绍 三.LVS负载均衡四种工作模式 1.NAT工作模式 2.DR工作模式 3.TUN工作模式 4.full-nat 工作模式 5.四者的区别 四.LVS i ...

  6. Admixture的监督分群(Supervised analysis)

    目录 说明 实战 说明 Admixture通过EM算法一般用于指定亚群分类:或者在不知材料群体结构背景下,通过迭代交叉验证获得error值,取最小error对应的K值为推荐亚群数目.如果我们预先已知群 ...

  7. python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数)

    python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评 ...

  8. 如何通过CRM评估客户价值和提高客户忠诚度?

    随着市场经济的日益繁荣,同行业之间企业的竞争越来越激烈,企业纷纷各出奇招吸引和挖掘客户,力求让自己的品牌成为更多客户的第一选择.那么,我们可以用什么方法来评估客户价值,提高客户忠诚度呢? 在互联网时代 ...

  9. Tableau 分群

    对数据的特征进行分析,分群. 数据选用的是Iris data 下载地址:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/ 1 ...

随机推荐

  1. http返回头中content-length与Transfer-Encoding: chunked的问题释疑

    先说说问题出现的背景:        公司服务器与手机客户端交互,客户端请求一个动态生成的XML文件,在用firebug查看http响应头的时候,有时候发现有content-length属性,有时候没 ...

  2. bzoj5219 [Lydsy2017省队十连测] 最长路径

    题意: 做法来自 首先竞赛图缩点后是一条链,\(1\)号节点在开头的那个\(SCC\)中,因此从\(1\)号节点出发的最长链即为\(1\)号节点所在的\(SCC\)的大小\(+1\)号节点拓扑序之后的 ...

  3. bzoj3293 分金币

    题目链接 problem 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使 得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. so ...

  4. Ubuntu更新python3.5到python3.7

    一 下载wget https://www.python.org/ftp/python/3.7.1/Python-3.7.1rc2.tgz 二 解压tar zxvf Python-3.7.1rc2.tg ...

  5. 黑科技,利用python拨打电话,控制手机技术!

    跟selenium操作浏览器原理类似,这是用appium操作移动设备的一个自动化功能,自娱自乐,主要是通过小案例引出相关技术 很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手. 很 ...

  6. 通过组件实现相同group下字符串拼接

    实现效果 组件处理流程如下:         1 使用Sorter组件对ColA进行排序       2 使用expression组件进行如下配置 3 使用aggregate组件进行如下配置 ColA ...

  7. sierpinski地毯

    (分形作业) 取一矩形,九等分而去其中. 每一份九等分去其中:循环往复.       方法一(传统方法) 将每个矩形映射到三个矩形中去即可. def big(a,times):    k=3**tim ...

  8. HikariCP监控指标介绍和应用

    概述 HikariCP提供了一些监控指标,他的监控指标都是基于MicroMeter提供出来的,然后支持Prometheus和Dropwizard.本次我们将讨论一下HikariCp的监控指标有哪些,为 ...

  9. SAP模块常用增强总结(转)

    转自:http://blog.sina.com.cn/s/blog_4298a2c80102x40c.html MM模块: 采购订单增强: BADI :ME_GUI_PO_CUST ME_PROCES ...

  10. Android studio移动项目到另外一个文件夹,结果不能安装的解决方法

    删除.gradle , .idea , build 三个文件夹即可