【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)
打表+暴搜
这道题目,显然是需要打表的,不过打表的方式可以有很多。
我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒。
然后我们就可以暴搜了,大体就是枚举等式左边两个数每一位的值,并枚举中间的运算符是\(+\)还是\(-\),然后计算出等式右边的值,判断是否合法。
中间过程可以加上一些剪枝。
注意当火柴棒从某一位移到另一位时,我们可以规定,去除火柴棒需要算步数,加入火柴棒则无需算步数,这样就可以避免重复了。
具体实现有一些小细节,可以参考代码
代码
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 20
#define Gmin(x,y) (x>(y)&&(x=(y)))
using namespace std;
const int q[10]={6,2,5,5,4,5,6,3,7,6};//打表
const int p[10][10]=//打表
{
{0,0,1,1,1,1,1,0,0,1},{0,0,1,0,0,1,1,0,0,0},{1,1,0,1,2,2,1,1,0,1},{1,0,1,0,1,1,1,0,0,0},{1,0,2,1,0,1,1,1,0,0},
{1,1,2,1,1,0,0,1,0,0},{1,1,1,1,1,0,0,1,0,1},{0,0,1,0,1,1,1,0,0,0},{0,0,0,0,0,0,0,0,0,0},{1,0,1,0,0,0,1,0,0,0}
};
int n,a[N+5],b[N+5];string s;
class Dfser//暴搜
{
private:
int ans;
I void Calc(CI x,CI y,RI v,CI w)//计算,判断答案是否合法
{
if(w<0) return;RI i,t,k=0,t1=0,t2=0;for(i=x;i^n;++i) t1+=b[i];
t=w;W(t2+=q[t%10],++k,t/=10);if(k>n-x||(t1+y)^t2) return;
for(t=w,i=n-1;i>=x;--i)
{
if(i^(n-1)&&!t) return;
v+=p[a[i]][t%10]+max(b[i]-q[t%10],0),t/=10;
}Gmin(ans,v);
}
I void dfs(CI x,CI y,CI v,CI sv,CI op,CI tot)//暴搜,枚举每一位的值和运算符
{
if(abs(y)>5*(n-x)||ans<=v) return;if(s[x]=='=') return Calc(x+1,y,v,tot+sv*op);
if(s[x]=='+') dfs(x+1,y,v,0,1,tot+sv*op),dfs(x+1,y+1,v+1,0,-1,tot+sv*op);
else if(s[x]=='-') dfs(x+1,y,v,0,-1,tot+sv*op),dfs(x+1,y-1,v,0,1,tot+sv*op);
else
{
dfs(x+1,y,v,sv*10+a[x],op,tot);
for(RI i=!((x&&isdigit(s[x-1]))||!isdigit(s[x+1]));i<=9;++i)
a[x]^i&&(dfs(x+1,y+b[x]-q[i],v+p[a[x]][i]+max(b[x]-q[i],0),sv*10+i,op,tot),0);
}
}
public:
I void Solve() {ans=1e9,dfs(0,0,0,0,1,0),ans==1e9?puts("-1"):printf("%d",ans);}
}D;
int main()
{
freopen("A.in","r",stdin),freopen("A.out","w",stdout);
cin>>s,n=s.length(),s+="@";for(RI i=0;i^n;++i) b[i]=q[a[i]=s[i]&15];
return D.Solve(),0;
}
【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)的更多相关文章
- 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...
- 【2019.7.25 NOIP模拟赛 T1】变换(change)(思维+大分类讨论)
几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[ ...
- 【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)
树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几 ...
- 【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)
数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这 ...
- 【2019.7.22 NOIP模拟赛 T1】麦克斯韦妖(demon)(质因数分解+DP)
暴力\(DP\) 先考虑暴力\(DP\)该怎么写. 因为每个序列之后是否能加上新的节点只与其结尾有关,因此我们设\(f_i\)为以\(i\)为结尾的最长序列长度. 每次枚举一个前置状态,判断是否合法之 ...
- 【2019.7.24 NOIP模拟赛 T1】道路建设(road)(水题)
原题与此题 原题是一道神仙不可做题,两者区别在于,原题不能有重边和自环. 然而,这题可以有重边... 于是这题就变成了一道大水题. 此题的解法 考虑如何构造. 对于\(n\le10^4\)的情况: 对 ...
- 【2019.7.26 NOIP模拟赛 T1】数字查找(figure)(数学)
推式子 我们设\(n=kp+w\),则: \[(kp+w)a^{kp+w}\equiv b(mod\ p)\] 将系数中的\(kp+w\)向\(p\)取模,指数中的\(kp+w\)根据欧拉定理向\(p ...
- 【2019.7.16 NOIP模拟赛 T1】洗牌(shuffle)(找环)
找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 ...
- 【2019.7.15 NOIP模拟赛 T1】夹缝(mirror)(思维题)
思维题 此题应该是比较偏思维的. 假设一次反射后前进的距离是\(2^x(2y+1)\),则显然,它可以看做是前进距离为\(2^x\)的光线经过了\((2y+1)\)次反射,两者是等价的,甚至后者可能还 ...
随机推荐
- 用CSS绘制实体三角形
用CSS绘制实体三角形 使用CSS盒模型中的border(边框)即可实现如下所示的三角形: .box { width: 0; height: 0; border-width: 100px; borde ...
- 如何查看PDF的坐标
有时候,我们明知道现状并不够科学.不够合理,但没有时间和条件去改变现状,还得硬要照着这种方式去维护,很是痛苦. 在程序生成文字报告通常使用docx,如果需要更通用.更灵活,还可以使用rtf,而前期设计 ...
- 打印对象(__str__()和__repr__())
当打印一个类的实例时,返回的字符串是对象的地址信息,如<__main__.Student object at 0x109afb310>,很不好看 可通过在类内定义__str__(),这样打 ...
- Linux 部署vue项目(使用nginx)
1.部署Nginx 请参考Linux下部署nginx,此处不再重复 2.Vue项目打包 # 打包正式环境 npm run build:prod # 打包预发布环境 npm run build:stag ...
- pytest框架之mark标签
对测试用例打标签,在运行测试用例的时候,可根据标签名来过滤要运行的用例. 一.注册标签名 1.创建pytest.ini文件,在文件中按如下方式添加标签名: [pytest] markers = smo ...
- vscode开发微信小程序使用less(插件Easy WXLESS)
1.搜索按照Easy WXLESS 2.在文件中加入下面的一行代码:就会在同级目录下同步代码到.wss // out: index.wxss 更多的写法可以查官网:https://marketplac ...
- Redis for OPS 07:Redis 补充说明
写在前面的话 redis 的各种架构搭建暂时就到这里,本文主要用于补充说明 Redis 的一些概念以及配置文件的相关信息. 常用词汇 缓存穿透: 类似热点数据存储 Redis 一样,对于非热点数据存储 ...
- 【语义分割】Stacked Hourglass Networks 以及 PyTorch 实现
Stacked Hourglass Networks(级联漏斗网络) 姿态估计(Pose Estimation)是 CV 领域一个非常重要的方向,而级联漏斗网络的提出就是为了提升姿态估计的效果,但是其 ...
- Web前端基础(6):CSS(三)
1. 定位 定位有三种:相对定位.绝对定位.固定定位 1.1 相对定位 现象和使用: 1.如果对当前元素仅仅设置了相对定位,那么与标准流的盒子什么区别. 2.设置相对定位之后,我们才可以使用四个方向的 ...
- MySQL入门——MySQL数据库和SQL语言
MySQL入门——MySQL数据库和SQL语言 摘要:本文主要了解了MySQL关系型数据库和SQL语言的基本知识. MySQL数据库 简介 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB ...