Linux进程管理 (篇外)内核线程简要介绍【转】
转自:https://www.cnblogs.com/arnoldlu/p/8336998.html
关键词:kthread、irq、ksoftirqd、kworker、workqueues
在使用ps查看线程的时候,会有不少[...]名称的线程,这些有别于其它线程,都是内核线程。
其中多数内核线程从名称看,就知道其主要功能。
比如给中断线程化使用的irq内核线程,软中断使用的内核线程ksoftirqd,以及work使用的kworker内核线程。
本文首先概览一下Linux都有哪些内核线程,然后分析创建内核线程的API。
在介绍内核线程和普通线程都有哪些区别?
最后介绍主要内核线程(irq/ksoftirqd/kworker/)的创建过程及其作用。
1. ps下初步认识Linux内核线程
在ps -a会显示如下,可以看出内核线程都用[...]标注。
并且pid=1的init进程是所有用户空间进程的父进程;pid=2的kthreadd内核线程是所有内核线程的父线程。
内核线程分为几大类:softirq、kworker、irq及其他。

PID USER TIME COMMAND
1 0 0:01 {linuxrc} init
2 0 0:00 [kthreadd]
3 0 0:00 [ksoftirqd/0]
4 0 0:00 [kworker/0:0]
5 0 0:00 [kworker/0:0H]
6 0 0:00 [kworker/u8:0]
7 0 0:00 [rcu_sched]
8 0 0:00 [rcu_bh]
9 0 0:00 [migration/0]
10 0 0:00 [migration/1]
11 0 0:00 [ksoftirqd/1]
12 0 0:00 [kworker/1:0]
13 0 0:00 [kworker/1:0H]
14 0 0:00 [migration/2]
15 0 0:00 [ksoftirqd/2]
16 0 0:00 [kworker/2:0]
17 0 0:00 [kworker/2:0H]
18 0 0:00 [migration/3]
19 0 0:00 [ksoftirqd/3]
20 0 0:00 [kworker/3:0]
21 0 0:00 [kworker/3:0H]
22 0 0:00 [khelper]
23 0 0:00 [kdevtmpfs]
24 0 0:00 [perf]
25 0 0:00 [kworker/u8:1]
279 0 0:00 [khungtaskd]
280 0 0:00 [writeback]
281 0 0:00 [kintegrityd]
282 0 0:00 [kworker/0:1]
284 0 0:00 [bioset]
286 0 0:00 [kblockd]
294 0 0:00 [ata_sff]
408 0 0:00 [rpciod]
409 0 0:00 [kworker/2:1]
410 0 0:00 [kworker/1:1]
412 0 0:00 [kswapd0]
416 0 0:00 [fsnotify_mark]
429 0 0:00 [nfsiod]
449 0 0:00 [kworker/3:1]
527 0 0:00 [kpsmoused]
537 0 0:00 [kworker/1:2]
613 0 0:00 [deferwq]

2. kthreadd以及创建内核线程API
2.1 kthreadd:kthreadd内核线程的创建
内核其他线程的创立,要基于kthreadd。kthreadd线程是其他线程的父线程。
start_kernel-->rest_init如下:

static noinline void __init_refok rest_init(void)
{
int pid; rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS);--------------------------------创建第一个用户空间线程init
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);---------------创建第一个内核线程kthreadd
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);--------------------kthreadd_task指向kthreadd的task_strcut结构体
rcu_read_unlock();
complete(&kthreadd_done);--------------------------------------------------在init进程kernel_init-->kernel_init_freeable中等待kthreadd_done释放 /*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
schedule_preempt_disabled();
/* Call into cpu_idle with preempt disabled */
cpu_startup_entry(CPUHP_ONLINE);
}

kernel_init在kthreadd之前启动,但是kernel_init的很多任务需要基于kthreadd。所以在kernel_init的开头等待reset_init的kthreadd_done完成量。
因为kernel_init-->kernel_init_freeable-->do_basic_setup-->do_initcalls中很多初始化需要kthread_create支援。

kernel_init-->kernel_init_freeable:
static noinline void __init kernel_init_freeable(void)
{
/*
* Wait until kthreadd is all set-up.
*/
wait_for_completion(&kthreadd_done);-------------------等待kthreadd_done完成量
...
do_basic_setup();---------------------------------------很多初始化需要kthread_create支持
...
}

内核中有一个线程kthreadd_task负责创建其他内核线程,这个线程的函数为kthreadd()。

int kthreadd(void *unused)
{
struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */
set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);
set_cpus_allowed_ptr(tsk, cpu_all_mask);
set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (list_empty(&kthread_create_list))
schedule();----------------------------------------------如果kthread_create_list为空,让出CPU,进入休眠状态。在kthread_create_on_node()中会将要创建进程节点加入到kthread_create_list中,然后唤醒此进程。
__set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock);
while (!list_empty(&kthread_create_list)) {------------------只要kthread_create_list不为空,遍历kthread_create_list链表
struct kthread_create_info *create; create = list_entry(kthread_create_list.next,
struct kthread_create_info, list);
list_del_init(&create->list);----------------------------从kthread_create_list中摘除当前create
spin_unlock(&kthread_create_lock); create_kthread(create);----------------------------------创建线程 spin_lock(&kthread_create_lock);
}
spin_unlock(&kthread_create_lock);
} return 0;
} static void create_kthread(struct kthread_create_info *create)
{
int pid; #ifdef CONFIG_NUMA
current->pref_node_fork = create->node;
#endif
/* We want our own signal handler (we take no signals by default). */
pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);----调用do_fork()创建线程
if (pid < 0) {
/* If user was SIGKILLed, I release the structure. */
struct completion *done = xchg(&create->done, NULL); if (!done) {
kfree(create);
return;
}
create->result = ERR_PTR(pid);
complete(done);--------------------------------------------------------触发complete事件
}
} pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
(unsigned long)arg, NULL, NULL);
}

2.2 创建内核线程接口:kthread_create等
kthread_create()是最常见的创建内核线程的接口。
kthread_create_on_cpu()相对于kthread_create多了个cpu,但都基于kthread_create_on_node()。
kthread_run基于kthreadd_create,所以这些函数都基于kthread_create_on_node。

#define kthread_create(threadfn, data, namefmt, arg...) \kthread_create_on_node(threadfn, data, -1, namefmt, ##arg) struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
void *data,
unsigned int cpu,
const char *namefmt); /**
* kthread_run - create and wake a thread.
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @namefmt: printf-style name for the thread.
*
* Description: Convenient wrapper for kthread_create() followed by
* wake_up_process(). Returns the kthread or ERR_PTR(-ENOMEM).
*/
#define kthread_run(threadfn, data, namefmt, ...) \
({ \
struct task_struct *__k \
=kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \
if (!IS_ERR(__k)) \--------------------------如果kthread_create()正确创建了一个进程,调用wake_up_process()唤醒它。
wake_up_process(__k); \
__k; \
})

kthread_create_on_node()负责创建一个线程,填充一个kthread_create_info结构体;然后将此结构体作为一个节点插入kthread_create_list队尾。
然后唤醒kthreadd_task进行处理,创建线程。

struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void *data, int node,
const char namefmt[],
...)
{
DECLARE_COMPLETION_ONSTACK(done);
struct task_struct *task;
struct kthread_create_info *create = kmalloc(sizeof(*create),
GFP_KERNEL);---------------------------------创建插入kthread_create_list的节点。 if (!create)
return ERR_PTR(-ENOMEM);
create->threadfn = threadfn;
create->data = data;
create->node = node;
create->done = &done; spin_lock(&kthread_create_lock);
list_add_tail(&create->list, &kthread_create_list);-------------------将填充的节点插入kthread_create_list中。
spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task);---------------------------------------唤醒kthread_task处理kthread_create_list链表,创建相应的线程。
/*
* Wait for completion in killable state, for I might be chosen by
* the OOM killer while kthreadd is trying to allocate memory for
* new kernel thread.
*/
if (unlikely(wait_for_completion_killable(&done))) {------------------等待complete事件触发,在create_kthread()中触发。
/*
* If I was SIGKILLed before kthreadd (or new kernel thread)
* calls complete(), leave the cleanup of this structure to
* that thread.
*/
if (xchg(&create->done, NULL))
return ERR_PTR(-EINTR);
/*
* kthreadd (or new kernel thread) will call complete()
* shortly.
*/
wait_for_completion(&done);---------------------------------------等待complete事件触发。
}
task = create->result;------------------------------------------------创建的结果为task_struct结构体。
if (!IS_ERR(task)) {
static const struct sched_param param = { .sched_priority = 0 };
va_list args; va_start(args, namefmt);
vsnprintf(task->comm, sizeof(task->comm), namefmt, args);---------配置进程名称。
va_end(args);
/*
* root may have changed our (kthreadd's) priority or CPU mask.
* The kernel thread should not inherit these properties.
*/
sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m);-----------设置进程调度策略为NORMAL,优先级为0。
set_cpus_allowed_ptr(task, cpu_all_mask);
}
kfree(create);--------------------------------------------------------释放kthread_create_info。
return task;
}

3. 内核线程和普通线程的区别
内核线程没有地址空间,所以task_struct->mm指针为NULL。内核线程没有用户上下文。
内核线程只工作在内核空间,不会切换至用户空间。但内核线程同样是可调度且可抢占的。
普通线程即可工作在内核空间,也可工作在用户空间。
内核线程只能访问3GB以上地址,而普通线程可访问所有4GB地址空间。
4. irq、softirq、woker内核线程
irq、softirq、worker都可能创建对应的内核线程,有线程就有优先级。
下面从优先来来看看它们的重要性。
可以看出中断内核线程优先级很高,为49,并且使用了实时调度策略。softirq和worker都是普通内核线程。
prio | policy | |
irq | 49 | SCHED_FIFO |
softirq | 120 | SCHED_NORMAL |
worker | 120 | SCHED_NORMAL |
init | 120 | SCHED_NORMAL |
kthreadd | 120 | SCHED_NORMAL |
cfinteractive | 0 | SCHED_FIFO |
其它特殊内核线程init优先级为120,kthreadd优先级为120.
cfinteractive优先级最高,主要处理CPU Frequency负载更新。
4.1 irq/xx-xx:创建处理线程化中断的线程
request_threaded_irq-->__setup_irq,可见如果设置了thread_fn,并且不允许中断嵌套,则创建一个类似"irq/中断号-终端名称"的线程。
线程函数是irq_thread,

/*
* Internal function to register an irqaction - typically used to
* allocate special interrupts that are part of the architecture.
*/
static int
__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
{
...
if (new->thread_fn && !nested) {
struct task_struct *t;
static const struct sched_param param = {
.sched_priority = MAX_USER_RT_PRIO/2,
}; t = kthread_create(irq_thread, new, "irq/%d-%s", irq,----------------在irq_thread中调用irq_thread_fn,进而调用action->thread_fn,request_threaded_irq参数thread_fn。
new->name);
...
}
...
}

request_irq是对request_threaded_irq的封装,创建中断线程的工作交给__setup_irq()。

static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
return request_threaded_irq(irq, handler, NULL, flags, name, dev);
}

更详细信息参考:《Linux中断管理 (1)Linux中断管理机制》中关于request_irq()介绍。
4.2 ksoftirqd/xx:创建处理软中断线程
软中断线程通过smpboot_register_percpu_thread注册softirq_threads创建。

static struct smp_hotplug_thread softirq_threads = {
.store = &ksoftirqd,
.thread_should_run = ksoftirqd_should_run,
.thread_fn = run_ksoftirqd,
.thread_comm = "ksoftirqd/%u",
}; static __init int spawn_ksoftirqd(void)
{
register_cpu_notifier(&cpu_nfb); BUG_ON(smpboot_register_percpu_thread(&softirq_threads)); return 0;
}

smpboot_register_percpu_thread-->__smpboot_create_thread,最终也还是调用kthread_create_on_cpu,创建了类似"ksoftirqd/xx"的内核线程,xx为cpuid号。
从ps -a中可以看出创建的结果如下,可以看出每个CPU创建了一个ksoftirqd内核线程。
3 0 0:03 [ksoftirqd/0]
11 0 0:03 [ksoftirqd/1]
15 0 0:00 [ksoftirqd/2]
19 0 0:00 [ksoftirqd/3]
更详细信息参考: 《Linux中断管理 (2)软中断和tasklet》
4.3 kworker:创建work的工作线程
kwoker线程是处理work的工作线程,详细参考《Linux中断管理 (3)workqueue工作队列》。
每个CPU都会创建自己的workqueue,用以集中处理内核kworker。
workquuue就是把一些任务(work)推迟到一个或一组内核线程中去执行,那个内核线程被称为worker_thread。
首先看看创建结果,可以看出在init_workqueues中创建了绑定CPU0的两个kworker,分别是nice=0和nice=-20。
apply_workqueue_attrs创建unbund worker,即kworker/u8:0。
然后在每个CPU_UP_PREPARE回调中创建两个不同nice的kworker。所以四个CPU一共9个内核线程。

PID USER TIME COMMAND
1 0 0:01 {linuxrc} init
2 0 0:00 [kthreadd]
3 0 0:00 [ksoftirqd/0]
4 0 0:00 [kworker/0:0]
5 0 0:00 [kworker/0:0H]---------------init_workqueues-->create_worker
6 0 0:00 [kworker/u8:0]---------------apply_workqueue_attrs-->alloc_unbound_pwq-->create_worker
7 0 0:00 [rcu_sched]
8 0 0:00 [rcu_bh]
9 0 0:00 [migration/0]
10 0 0:00 [migration/1]
11 0 0:00 [ksoftirqd/1]
12 0 0:00 [kworker/1:0]---------------workqueue_cpu_up_callback-->create_worker
13 0 0:00 [kworker/1:0H]
14 0 0:00 [migration/2]
15 0 0:00 [ksoftirqd/2]
16 0 0:00 [kworker/2:0]
17 0 0:00 [kworker/2:0H]--------------workqueue_cpu_up_callback-->create_worker
18 0 0:00 [migration/3]
19 0 0:00 [ksoftirqd/3]
20 0 0:00 [kworker/3:0]
21 0 0:00 [kworker/3:0H]--------------workqueue_cpu_up_callback-->create_worker
22 0 0:00 [khelper]
23 0 0:00 [kdevtmpfs]
24 0 0:00 [perf]
25 0 0:00 [kworker/u8:1]--------------worker_thread-->create_worker
279 0 0:00 [khungtaskd]
280 0 0:00 [writeback]
281 0 0:00 [kintegrityd]
282 0 0:00 [kworker/0:1]---------------worker_thread-->create_worker
284 0 0:00 [bioset]
286 0 0:00 [kblockd]
294 0 0:00 [ata_sff]
408 0 0:00 [rpciod]
409 0 0:00 [kworker/2:1]---------------worker_thread-->create_worker
410 0 0:00 [kworker/1:1]---------------worker_thread-->create_worker
412 0 0:00 [kswapd0]
416 0 0:00 [fsnotify_mark]
429 0 0:00 [nfsiod]
449 0 0:00 [kworker/3:1]---------------worker_thread-->create_worker
527 0 0:00 [kpsmoused]
537 0 0:00 [kworker/1:2]---------------worker_thread-->create_worker
613 0 0:00 [deferwq]

init_workqueues-->create_worker-->kthread_create_on_node,创建"kworker/xx:xxH"内核线程。

static int __init init_workqueues(void)
{
int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
int i, cpu;
...
/* create the initial worker */
for_each_online_cpu(cpu) {---------------------------------遍历CPU[0~3]
struct worker_pool *pool; for_each_cpu_worker_pool(pool, cpu) {------------------NR_STD_WORKER_POOLS=2,所以每个CPU有两个pool
pool->flags &= ~POOL_DISASSOCIATED;
BUG_ON(!create_worker(pool));
}
}
...
system_wq = alloc_workqueue("events", 0, 0);
system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
system_long_wq = alloc_workqueue("events_long", 0, 0);
system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
WQ_UNBOUND_MAX_ACTIVE);
system_freezable_wq = alloc_workqueue("events_freezable",
WQ_FREEZABLE, 0);
system_power_efficient_wq = alloc_workqueue("events_power_efficient",
WQ_POWER_EFFICIENT, 0);
system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
WQ_FREEZABLE | WQ_POWER_EFFICIENT,
0);
BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
!system_unbound_wq || !system_freezable_wq ||
!system_power_efficient_wq ||
!system_freezable_power_efficient_wq);
return 0;
}

create_worker()函数创建工作线程。

static struct worker *create_worker(struct worker_pool *pool)
{
...
if (pool->cpu >= 0)
snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,-------------cpuid和id,区分cpu和cpu内kworker。
pool->attrs->nice < 0 ? "H" : "");
else
snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);--------------u表示不指定cpu。 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
"kworker/%s", id_buf);
...
}

更详细信息参考:《Linux中断管理 (3)workqueue工作队列》、《Linux workqueue工作原理》、《Concurrency Managed Workqueue之(一):workqueue的基本概念》
5. 其他内核线程
rcu_sched、rcu_bh
migration
khelper
kdevtmpfs
perf
writeback
kintegrityd
bioset
kblockd
ata_sff
rpciod
kswapd
nfsiod
kpsmpused
deferwq
Linux进程管理 (篇外)内核线程简要介绍【转】的更多相关文章
- Linux进程管理 (篇外)内核线程简要介绍
关键词:kthread.irq.ksoftirqd.kworker.workqueues 在使用ps查看线程的时候,会有不少[...]名称的线程,这些有别于其它线程,都是内核线程. 其中多数内核线程从 ...
- Linux进程管理(三、 线程)
// ---- refer glibc, pthread_create.c ----// int __pthread_create_2_0 (newthread, attr, start_routin ...
- Linux进程管理专题
Linux进程管理 (1)进程的诞生介绍了如何表示进程?进程的生命周期.进程的创建等等? Linux支持多种调度器(deadline/realtime/cfs/idle),其中CFS调度器最常见.Li ...
- Linux进程管理 (1)进程的诞生
专题:Linux进程管理专题 目录: Linux进程管理 (1)进程的诞生 Linux进程管理 (2)CFS调度器 Linux进程管理 (3)SMP负载均衡 Linux进程管理 (4)HMP调度器 L ...
- Linux进程管理 (2)CFS调度器
关键词: 目录: Linux进程管理 (1)进程的诞生 Linux进程管理 (2)CFS调度器 Linux进程管理 (3)SMP负载均衡 Linux进程管理 (4)HMP调度器 Linux进程管理 ( ...
- Linux进程管理子系统分析【转】
本文转载自:http://blog.csdn.net/coding__madman/article/details/51298732 Linux进程管理: 进程与程序: 程序:存放在磁盘上的一系列代码 ...
- Linux进程管理知识整理
Linux进程管理知识整理 1.进程有哪些状态?什么是进程的可中断等待状态?进程退出后为什么要等待调度器删除其task_struct结构?进程的退出状态有哪些? TASK_RUNNING(可运行状态) ...
- Linux 进程管理剖析--转
地址:http://www.ibm.com/developerworks/cn/linux/l-linux-process-management/index.html Linux 是一种动态系统,能够 ...
- Linux性能及调优指南(翻译)之Linux进程管理
本文为IBM RedBook的Linux Performanceand Tuning Guidelines的1.1节的翻译原文地址:http://www.redbooks.ibm.com/redpap ...
随机推荐
- pyspark 使用时环境设置
在脚本中导入pyspark的流程 import os import sys spark_name = os.environ.get('SPARK_HOME',None) # SPARK_HOME即sp ...
- 问题解决:import paddle.fluid出错:DLL load failed: 找不到指定的模块
问题描述: 使用Pycharm编程,导入paddlepaddle库出错.即:import paddle.fluid出错:DLL load failed: 找不到指定的模块 解决方法: 补上缺失的DLL ...
- tensorflow的MNIST教程
(ps:根据自己的理解,提炼了一下官方文档的内容,错误的地方希望大佬们多多指正.....) 0x01:数据集的获取和表示 数据集的获取,可以通过代码自动下载.这里的数据就是各种手写数字图片和图片对应的 ...
- 第十二周Scrum会议
本次照片 总结上周所达成的工作 做到的工作 1. 将前端页面进行了比较美观的美化 2. 实现了后台的代码的整合,同时将flask项目的整体框架搭建完成 3. 进行了数据库的建表等一些工作 遇到的难点 ...
- [C9] 降维(Dimensionality Reduction)
降维(Dimensionality Reduction) 动机一:数据压缩(Motivation I : Data Compression) 数据压缩允许我们压缩数据,从而使用较少的计算机内存或磁盘空 ...
- luoguP4248 [AHOI2013]差异
题意 考虑式子前面那段其实是\((n-1)*\frac{n*(n+1)}{2}\),因为每个后缀出现了\(n-1\)次,后缀总长为\(\frac{n*(n+1)}{2}\). 现在考虑后面怎么求: \ ...
- php 学习笔记之关于时区的那点事
科普一下什么是时区 众所周知,地球绕着太阳转的同时也会自转,因此同一时刻不同地区所接收到太阳照射的情况不同,所以有的地区是日出,有的地区是日落,还有的地区可能是黑夜. 既然地球上的不同地区时间不同,那 ...
- 【转】Visual Studio 2008 可扩展性开发(二):Macro和Add-In初探
前言 在VS概览中,我们简单回顾了一下VS的历史.本文将通过两个简单的例子来说明Macro和Add-In的开发.通过Macro我们把VS中的一些重复操作录制下来,之后可以多次运行,节省时间并保持好的心 ...
- FIddler+Proxifer 实现PC客户端抓包
Proxifier设置 1.安装Proxifier 下载地址:http://www.hanzify.org/software/13717.html 2.配置代理服务器 A.开启HTTP协议 Proxi ...
- F#周报2019年第24期
新闻 ML.NET 1.1发布与模型构建器升级 .NET Core 3.0预览版6发布 尝试新的System.Text.Json API F#调用Infer.NET 匿名记录类型文档 了解FableC ...