The country Tom living in is famous for traveling. Every year, many tourists from all over the world have interests in traveling there. 
There are n provinces in the country. According to the experiences from the tourists came before, every province has its own preference value. A route’s preference value from one province to another is defined as the product of all the preference value of the provinces on the route. It’s guaranteed that for each two provinces in the country there is a unique route from one to another without passing any province twice or more. 
Tom is a boy crazy about cube number. A cube number is a positive integer whose cube root is also an integer. He is planning to travel from a province to another in the summer vacation and he will only choose the route with the cube number preference value. Now he want to know the number of routes that satisfy his strange requirement.

Input

The input contains several test cases, terminated by EOF. 
Each case begins with a number n ( 1 ≤ n ≤ 50000), the number of the provinces. 
The second line begins with a number K (1 ≤ K ≤ 30), and K difference prime numbers follow. It’s guaranteed that all the preference number can be represented by the product of some of this K numbers(a number can appear multiple times). 
The third line consists of n integer numbers, the ith number indicating the preference value P i(0 ≤ P i ≤ 10 15) of the i-th province. 
Then n - 1 lines follow. Each line consists of two integers x, y, indicating there is a road connecting province x and province y.

Output

For each test case, print a number indicating the number of routes that satisfy the requirement.Sample Input

5
3 2 3 5
2500 200 9 270000 27
4 2
3 5
2 5
4 1

Sample Output

1

题解:

题意:给你一棵树,给你一些素数,给你每个点一个权值且每个权值均可由这些素数组成。现在定义任意任意两点的价值为他们路径上的权值相乘。求这样的点对的权值为立方数的个数
如果直接求得话会超int64,不可行
由立方数的性质可得,一个数可有素数组成,对于这些素数可以分解为这些素数相乘的形式如,24=(2^3)*(3^1);如果是立方数的话那么他的各进制对3取余都为0.股24可写成01这种三进制形式
对于这些权值的乘法可有三进制想加可得。
接下来就是树的分治了
当然这里可以先求出一条子树上的各个点的权值乘积,然后和根节点和其他字树比较看是否可以互补那么就找到一对
可用map容器实现。因为他重点是比较到根节点和其他子树是否可以互补,进而递归下去,求出每个子树的这样的点对

参考代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define fi first
#define se second
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
#define pb push_back
const int INF=0x3f3f3f3f;
const ll inf=0x3f3f3f3f3f3f3f3fll;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
const int maxn=1e5+;
ll n,k,head[maxn],tot,root,siz[maxn];
ll h[maxn][],pri[],fa[maxn],mx[maxn],S;
ll dep,ch[maxn][],fp[maxn],minn,nn;
bool vis[maxn];
map<ll,ll> mp;
struct Edge{
int v,nxt;
} edge[maxn<<]; inline void Init()
{
tot=;
memset(head,-,sizeof(head));
memset(h,,sizeof(h));
memset(mx,,sizeof(mx));
memset(siz,,sizeof(siz));
memset(vis,false,sizeof(vis));
} inline void AddEdge(ll u,ll v)
{
edge[tot].v=v;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs1(ll u,ll fa)
{
nn++;
for(int e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
dfs1(v,u);
}
} inline void GetRoot(ll u,ll fa)
{
siz[u]=;
ll tit=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
GetRoot(v,u);
siz[u]+=siz[v];
tit=max(tit,siz[v]);
}
tit=max(tit,nn-siz[u]);
if(tit<minn) minn=tit,root=u;
}
inline void dfs2(ll u,ll fa)
{
//cout<<"dfs2"<<endl;
if(fa==-)
{
for(ll i=;i<=k;++i)
ch[dep][i]=h[u][i];
}
else
{
ll e=fp[fa];
for(ll i=;i<=k;++i)
ch[dep][i]=(h[u][i]+ch[e][i])%;
}
fp[u]=dep++;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v!=fa&&!vis[v]) dfs2(v,u);
}
} inline ll work(ll u)
{
ll s1=,ans=;
mp.clear();
for(ll i=;i<=k;++i) s1=s1*+h[u][i];
if(s1==) ans++;
mp[s1]=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
dep=;dfs2(v,-);
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(-ch[i][j])%;
ans+=mp[s1];
}
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(ch[i][j]+h[u][j])%;
mp[s1]++;
}
}
return ans;
} inline ll dfs(ll u)
{
nn=,minn=inf;
dfs1(u,-);
GetRoot(u,-);
vis[root]=;
ll ans=work(root);
for(ll e=head[root];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
ans+=dfs(v);
}
return ans;
} int main()
{
while(~scanf("%lld",&n))
{
Init();
k=read();
for(ll i=;i<=k;++i) pri[i]=read(); for(ll i=;i<=n;++i)
{
ll kk,val=read();
for(ll j=;j<=k;++j)
{
kk=;
while(val%pri[j]==)
{
++kk;
val/=pri[j];
kk%=;
}
h[i][j]=kk;
}
}
for(ll i=;i<n;++i)
{
ll x,y;
x=read();y=read();
AddEdge(x,y);AddEdge(y,x);
}
//cout<<"1"<<endl;
printf("%lld\n",dfs());
} return ;
}

HDU4670 cube number on a tree(点分治+三进制加法)的更多相关文章

  1. HDU4670 Cube number on a tree 树分治

    人生的第一道树分治,要是早点学我南京赛就不用那么挫了,树分治的思路其实很简单,就是对子树找到一个重心(Centroid),实现重心分解,然后递归的解决分开后的树的子问题,关键是合并,当要合并跨过重心的 ...

  2. [hdu4670 Cube number on a tree]点分治

    题意:给一个N个带权节点的树,权值以给定的K个素数为因子,求路径上节点乘积为立方数的路径条数 思路:立方数的性质是每个因子的个数为3的倍数,那么每个因子只需要保存0-2三个状态即可,然后路径就可以转化 ...

  3. 【点分治】【map】【哈希表】hdu4670 Cube number on a tree

    求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要 ...

  4. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  5. HDU 4670 Cube number on a tree ( 树的点分治 )

    题意 : 给你一棵树 . 树的每一个结点都有一个权值 . 问你有多少条路径权值的乘积是一个全然立方数 . 题目中给了你 K 个素数 ( K <= 30 ) , 全部权值都能分解成这k个素数 思路 ...

  6. HDU 4670 Cube number on a tree

    divide and conquer on tree. #include <map> #include <vector> #include <cstdio> #in ...

  7. Square Number & Cube Number

    Square Number: Description In mathematics, a square number is an integer that is the square of an in ...

  8. CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT

    Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...

  9. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

随机推荐

  1. PowerMock学习(一)之PoweMock的入门--模拟新增学生操作

    关于powermock 在TDD领域Mock框架有很多,比如EasyMock,JMock,Mockito.可能有些同学会好奇了,为什么要重点把powermock拿出来呢,因为powermock可以解决 ...

  2. 014.Kubernetes二进制部署docker

    一 部署docker 1.1 部署docker组件 docker 运行和管理容器,kubelet 通过 Container Runtime Interface (CRI) 与它进行交互. 1.2 下载 ...

  3. spark-Worker内部工作流程

  4. logback日志回顾整理--2018年8月8日

    几年前使用过logback作为项目的日志框架. 当时觉得这个框架比log4j更加好用. 所以系统的学习了一遍. 后来换了公司, 不再使用logback. 如今, 又有机会使用logback了, 所以, ...

  5. ZeroC ICE中的对象模型和概念

    Ice对象的模型和概念. Ice Object并非是我们的接口实现类的实例对象.我们的接口实现类的实例对象只是充当Ice Object的Servant的角色.一个Ice Object可以有众多Serv ...

  6. zip的压缩和解压命令

    以下命令均在/home目录下操作cd /home #进入/home目录 1.把/home目录下面的data目录压缩为data.zip zip -r data.zip data #压缩data目录   ...

  7. PHP编程20大效率要点

    1.如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍. 2.$row[’id’] 的速度是$row[id]的7倍. 3.echo 比 print 快,并且使用ech ...

  8. 利用tomcat搭建图片服务器

    今天来教大家如何使用 tomcat 来搭建一个图片的服务器 1.先将tomcat解压一份并改名 2.此时apache-tomcat-8.5.43-windows-x64-file为图片服务器 依次打开 ...

  9. Vue 幸运大转盘

    转盘抽奖主要有两种,指针转动和转盘转动,个人觉得转盘转动比较好看点,指针转动看着头晕,转盘转动时指针是在转盘的中间位置,这里要用到css的transform属性和transition属性,这两个因为不 ...

  10. vue 优化小技巧 之 require.context()

    1.require.context() 回忆一下 当我们引入组件时 第一步 创建一个子组件 第二步 import ... form ... 第三步 components:{..} 第四步 页面使用 & ...