The country Tom living in is famous for traveling. Every year, many tourists from all over the world have interests in traveling there. 
There are n provinces in the country. According to the experiences from the tourists came before, every province has its own preference value. A route’s preference value from one province to another is defined as the product of all the preference value of the provinces on the route. It’s guaranteed that for each two provinces in the country there is a unique route from one to another without passing any province twice or more. 
Tom is a boy crazy about cube number. A cube number is a positive integer whose cube root is also an integer. He is planning to travel from a province to another in the summer vacation and he will only choose the route with the cube number preference value. Now he want to know the number of routes that satisfy his strange requirement.

Input

The input contains several test cases, terminated by EOF. 
Each case begins with a number n ( 1 ≤ n ≤ 50000), the number of the provinces. 
The second line begins with a number K (1 ≤ K ≤ 30), and K difference prime numbers follow. It’s guaranteed that all the preference number can be represented by the product of some of this K numbers(a number can appear multiple times). 
The third line consists of n integer numbers, the ith number indicating the preference value P i(0 ≤ P i ≤ 10 15) of the i-th province. 
Then n - 1 lines follow. Each line consists of two integers x, y, indicating there is a road connecting province x and province y.

Output

For each test case, print a number indicating the number of routes that satisfy the requirement.Sample Input

5
3 2 3 5
2500 200 9 270000 27
4 2
3 5
2 5
4 1

Sample Output

1

题解:

题意:给你一棵树,给你一些素数,给你每个点一个权值且每个权值均可由这些素数组成。现在定义任意任意两点的价值为他们路径上的权值相乘。求这样的点对的权值为立方数的个数
如果直接求得话会超int64,不可行
由立方数的性质可得,一个数可有素数组成,对于这些素数可以分解为这些素数相乘的形式如,24=(2^3)*(3^1);如果是立方数的话那么他的各进制对3取余都为0.股24可写成01这种三进制形式
对于这些权值的乘法可有三进制想加可得。
接下来就是树的分治了
当然这里可以先求出一条子树上的各个点的权值乘积,然后和根节点和其他字树比较看是否可以互补那么就找到一对
可用map容器实现。因为他重点是比较到根节点和其他子树是否可以互补,进而递归下去,求出每个子树的这样的点对

参考代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define fi first
#define se second
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
#define pb push_back
const int INF=0x3f3f3f3f;
const ll inf=0x3f3f3f3f3f3f3f3fll;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
const int maxn=1e5+;
ll n,k,head[maxn],tot,root,siz[maxn];
ll h[maxn][],pri[],fa[maxn],mx[maxn],S;
ll dep,ch[maxn][],fp[maxn],minn,nn;
bool vis[maxn];
map<ll,ll> mp;
struct Edge{
int v,nxt;
} edge[maxn<<]; inline void Init()
{
tot=;
memset(head,-,sizeof(head));
memset(h,,sizeof(h));
memset(mx,,sizeof(mx));
memset(siz,,sizeof(siz));
memset(vis,false,sizeof(vis));
} inline void AddEdge(ll u,ll v)
{
edge[tot].v=v;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs1(ll u,ll fa)
{
nn++;
for(int e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
dfs1(v,u);
}
} inline void GetRoot(ll u,ll fa)
{
siz[u]=;
ll tit=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
GetRoot(v,u);
siz[u]+=siz[v];
tit=max(tit,siz[v]);
}
tit=max(tit,nn-siz[u]);
if(tit<minn) minn=tit,root=u;
}
inline void dfs2(ll u,ll fa)
{
//cout<<"dfs2"<<endl;
if(fa==-)
{
for(ll i=;i<=k;++i)
ch[dep][i]=h[u][i];
}
else
{
ll e=fp[fa];
for(ll i=;i<=k;++i)
ch[dep][i]=(h[u][i]+ch[e][i])%;
}
fp[u]=dep++;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v!=fa&&!vis[v]) dfs2(v,u);
}
} inline ll work(ll u)
{
ll s1=,ans=;
mp.clear();
for(ll i=;i<=k;++i) s1=s1*+h[u][i];
if(s1==) ans++;
mp[s1]=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
dep=;dfs2(v,-);
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(-ch[i][j])%;
ans+=mp[s1];
}
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(ch[i][j]+h[u][j])%;
mp[s1]++;
}
}
return ans;
} inline ll dfs(ll u)
{
nn=,minn=inf;
dfs1(u,-);
GetRoot(u,-);
vis[root]=;
ll ans=work(root);
for(ll e=head[root];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
ans+=dfs(v);
}
return ans;
} int main()
{
while(~scanf("%lld",&n))
{
Init();
k=read();
for(ll i=;i<=k;++i) pri[i]=read(); for(ll i=;i<=n;++i)
{
ll kk,val=read();
for(ll j=;j<=k;++j)
{
kk=;
while(val%pri[j]==)
{
++kk;
val/=pri[j];
kk%=;
}
h[i][j]=kk;
}
}
for(ll i=;i<n;++i)
{
ll x,y;
x=read();y=read();
AddEdge(x,y);AddEdge(y,x);
}
//cout<<"1"<<endl;
printf("%lld\n",dfs());
} return ;
}

HDU4670 cube number on a tree(点分治+三进制加法)的更多相关文章

  1. HDU4670 Cube number on a tree 树分治

    人生的第一道树分治,要是早点学我南京赛就不用那么挫了,树分治的思路其实很简单,就是对子树找到一个重心(Centroid),实现重心分解,然后递归的解决分开后的树的子问题,关键是合并,当要合并跨过重心的 ...

  2. [hdu4670 Cube number on a tree]点分治

    题意:给一个N个带权节点的树,权值以给定的K个素数为因子,求路径上节点乘积为立方数的路径条数 思路:立方数的性质是每个因子的个数为3的倍数,那么每个因子只需要保存0-2三个状态即可,然后路径就可以转化 ...

  3. 【点分治】【map】【哈希表】hdu4670 Cube number on a tree

    求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要 ...

  4. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  5. HDU 4670 Cube number on a tree ( 树的点分治 )

    题意 : 给你一棵树 . 树的每一个结点都有一个权值 . 问你有多少条路径权值的乘积是一个全然立方数 . 题目中给了你 K 个素数 ( K <= 30 ) , 全部权值都能分解成这k个素数 思路 ...

  6. HDU 4670 Cube number on a tree

    divide and conquer on tree. #include <map> #include <vector> #include <cstdio> #in ...

  7. Square Number & Cube Number

    Square Number: Description In mathematics, a square number is an integer that is the square of an in ...

  8. CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT

    Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...

  9. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

随机推荐

  1. js正则匹配的出链接地址

    content为需要匹配的值 var b=/<a([\s]+|[\s]+[^<>]+[\s]+)href=(\"([^<>"\']*)\"| ...

  2. Oracle instant client免安装Oracle客户端配置

    不想安装几个G的完整版client,可以直接通过安装包安装的时候选择instant client,如果没有安装包,也可以直接去官网下载一个即时客户端,64位的windows包大小只有78MB左右 传送 ...

  3. [error] hadoop:ls: `.': No such file or directory

    问题: 解决: https://stackoverflow.com/questions/28241251/hadoop-fs-ls-results-in-no-such-file-or-directo ...

  4. JVM浅谈

    **前言** 由于先前也遇到过一些性能问题,OOM算是其中的一大类了.因此也对jvm产生了一些兴趣.自己对jvm略做了些研究.后续继续补充. **从oom引申出去** 既然说到oom,首先需要知道oo ...

  5. 【Java】抽象类和接口详解

    抽象类 一.抽象类的概述 现在请思考一个问题:假如我现在又Dog.Cat.Pig等实例对象,现在我们把它们都抽象成一个Animal类,这个类应该包含了这些Dog.Cat.Pig等实例对象eat的功能, ...

  6. 性能监视器PerfMon v2.0 是一个流氓的汉化版

    最近在部署一台新设备时,由于懒得翻墙用google下载软件,由一次中了坑.百度搜索出来的这个<性能监视器 v2.0 汉化版>,安装了之后,设备会时不时自动弹出广告.反编译分析了一下,的确就 ...

  7. node中mysql和短信使用方法(3)

    一.mysql的使用 使用mysql首先得有数据库并且表里面有数据,我创建了数据库newsql,里面Tables有表company等等. company有id,name,other等字段 1.导入my ...

  8. Scala学习系列一

    一 scala介绍 Scala是一门以java虚拟机(JVM)为目标运行环境并将面向对象和函数式编程的最佳特性结合在一起的静态类型编程语言. 1)  Scala 是一门多范式 (multi-parad ...

  9. Maven搭建SpringMvc

    Maven搭建SpringMvc,只需跟着一步步操作 项目结构 1 创建Maven项目 index,jsp报错不用管,配置完pom就好了,也可以直接删除掉 2 pom.xml添加依赖 <depe ...

  10. CCNA 之 八 交换基础 VLAN TRUNK VTP

    交换基础 主要知识点: 二层交换基础 Vlan的概念 Trunk的概念 VTP 二层交换基本配置 首先来看下园区网分层结构 交换机的主要功能: Address learning 学习MAC地址 会维护 ...