HDU4670 cube number on a tree(点分治+三进制加法)
There are n provinces in the country. According to the experiences from the tourists came before, every province has its own preference value. A route’s preference value from one province to another is defined as the product of all the preference value of the provinces on the route. It’s guaranteed that for each two provinces in the country there is a unique route from one to another without passing any province twice or more.
Tom is a boy crazy about cube number. A cube number is a positive integer whose cube root is also an integer. He is planning to travel from a province to another in the summer vacation and he will only choose the route with the cube number preference value. Now he want to know the number of routes that satisfy his strange requirement.
Input
The input contains several test cases, terminated by EOF.
Each case begins with a number n ( 1 ≤ n ≤ 50000), the number of the provinces.
The second line begins with a number K (1 ≤ K ≤ 30), and K difference prime numbers follow. It’s guaranteed that all the preference number can be represented by the product of some of this K numbers(a number can appear multiple times).
The third line consists of n integer numbers, the ith number indicating the preference value P i(0 ≤ P i ≤ 10 15) of the i-th province.
Then n - 1 lines follow. Each line consists of two integers x, y, indicating there is a road connecting province x and province y.
Output
For each test case, print a number indicating the number of routes that satisfy the requirement.Sample Input
5
3 2 3 5
2500 200 9 270000 27
4 2
3 5
2 5
4 1
Sample Output
1
题解:
题意:给你一棵树,给你一些素数,给你每个点一个权值且每个权值均可由这些素数组成。现在定义任意任意两点的价值为他们路径上的权值相乘。求这样的点对的权值为立方数的个数
如果直接求得话会超int64,不可行
由立方数的性质可得,一个数可有素数组成,对于这些素数可以分解为这些素数相乘的形式如,24=(2^3)*(3^1);如果是立方数的话那么他的各进制对3取余都为0.股24可写成01这种三进制形式
对于这些权值的乘法可有三进制想加可得。
接下来就是树的分治了
当然这里可以先求出一条子树上的各个点的权值乘积,然后和根节点和其他字树比较看是否可以互补那么就找到一对
可用map容器实现。因为他重点是比较到根节点和其他子树是否可以互补,进而递归下去,求出每个子树的这样的点对
参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define fi first
#define se second
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
#define pb push_back
const int INF=0x3f3f3f3f;
const ll inf=0x3f3f3f3f3f3f3f3fll;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
const int maxn=1e5+;
ll n,k,head[maxn],tot,root,siz[maxn];
ll h[maxn][],pri[],fa[maxn],mx[maxn],S;
ll dep,ch[maxn][],fp[maxn],minn,nn;
bool vis[maxn];
map<ll,ll> mp;
struct Edge{
int v,nxt;
} edge[maxn<<]; inline void Init()
{
tot=;
memset(head,-,sizeof(head));
memset(h,,sizeof(h));
memset(mx,,sizeof(mx));
memset(siz,,sizeof(siz));
memset(vis,false,sizeof(vis));
} inline void AddEdge(ll u,ll v)
{
edge[tot].v=v;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs1(ll u,ll fa)
{
nn++;
for(int e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
dfs1(v,u);
}
} inline void GetRoot(ll u,ll fa)
{
siz[u]=;
ll tit=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v==fa||vis[v]) continue;
GetRoot(v,u);
siz[u]+=siz[v];
tit=max(tit,siz[v]);
}
tit=max(tit,nn-siz[u]);
if(tit<minn) minn=tit,root=u;
}
inline void dfs2(ll u,ll fa)
{
//cout<<"dfs2"<<endl;
if(fa==-)
{
for(ll i=;i<=k;++i)
ch[dep][i]=h[u][i];
}
else
{
ll e=fp[fa];
for(ll i=;i<=k;++i)
ch[dep][i]=(h[u][i]+ch[e][i])%;
}
fp[u]=dep++;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(v!=fa&&!vis[v]) dfs2(v,u);
}
} inline ll work(ll u)
{
ll s1=,ans=;
mp.clear();
for(ll i=;i<=k;++i) s1=s1*+h[u][i];
if(s1==) ans++;
mp[s1]=;
for(ll e=head[u];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
dep=;dfs2(v,-);
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(-ch[i][j])%;
ans+=mp[s1];
}
for(ll i=;i<dep;++i)
{
s1=;
for(ll j=;j<=k;++j)
s1=s1*+(ch[i][j]+h[u][j])%;
mp[s1]++;
}
}
return ans;
} inline ll dfs(ll u)
{
nn=,minn=inf;
dfs1(u,-);
GetRoot(u,-);
vis[root]=;
ll ans=work(root);
for(ll e=head[root];~e;e=edge[e].nxt)
{
ll v=edge[e].v;
if(vis[v]) continue;
ans+=dfs(v);
}
return ans;
} int main()
{
while(~scanf("%lld",&n))
{
Init();
k=read();
for(ll i=;i<=k;++i) pri[i]=read(); for(ll i=;i<=n;++i)
{
ll kk,val=read();
for(ll j=;j<=k;++j)
{
kk=;
while(val%pri[j]==)
{
++kk;
val/=pri[j];
kk%=;
}
h[i][j]=kk;
}
}
for(ll i=;i<n;++i)
{
ll x,y;
x=read();y=read();
AddEdge(x,y);AddEdge(y,x);
}
//cout<<"1"<<endl;
printf("%lld\n",dfs());
} return ;
}
HDU4670 cube number on a tree(点分治+三进制加法)的更多相关文章
- HDU4670 Cube number on a tree 树分治
人生的第一道树分治,要是早点学我南京赛就不用那么挫了,树分治的思路其实很简单,就是对子树找到一个重心(Centroid),实现重心分解,然后递归的解决分开后的树的子问题,关键是合并,当要合并跨过重心的 ...
- [hdu4670 Cube number on a tree]点分治
题意:给一个N个带权节点的树,权值以给定的K个素数为因子,求路径上节点乘积为立方数的路径条数 思路:立方数的性质是每个因子的个数为3的倍数,那么每个因子只需要保存0-2三个状态即可,然后路径就可以转化 ...
- 【点分治】【map】【哈希表】hdu4670 Cube number on a tree
求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要 ...
- hdu 4670 Cube number on a tree(点分治)
Cube number on a tree Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/ ...
- HDU 4670 Cube number on a tree ( 树的点分治 )
题意 : 给你一棵树 . 树的每一个结点都有一个权值 . 问你有多少条路径权值的乘积是一个全然立方数 . 题目中给了你 K 个素数 ( K <= 30 ) , 全部权值都能分解成这k个素数 思路 ...
- HDU 4670 Cube number on a tree
divide and conquer on tree. #include <map> #include <vector> #include <cstdio> #in ...
- Square Number & Cube Number
Square Number: Description In mathematics, a square number is an integer that is the square of an in ...
- CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT
Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...
- 【BZOJ-1468】Tree 树分治
1468: Tree Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1025 Solved: 534[Submit][Status][Discuss] ...
随机推荐
- logback日志回顾整理--2018年8月8日
几年前使用过logback作为项目的日志框架. 当时觉得这个框架比log4j更加好用. 所以系统的学习了一遍. 后来换了公司, 不再使用logback. 如今, 又有机会使用logback了, 所以, ...
- jenkins手把手教你从入门到放弃01-jenkins简介(详解)
一.简介 jenkins是一个可扩展的持续集成引擎.持续集成,也就是通常所说的CI(Continues Integration),可以说是现代软件技术开发的基础.持续集成是一种软件开发实践, 即团队开 ...
- GCD 面试题
今天我们讲解几道这两天遇到的面试题--GCD编程的.题目很不错,很考究关于GCD的基本概念和使用. 对于基本的概念,本人博客已在前面讲过,本篇主要以面试题来讲解.大家可看一下本人关于GCD的基本讲解 ...
- 【Java】final修饰符的使用
final修饰符的使用 1.修饰类: final修饰的类不能被继承,final修饰的类里面的方法都是(隐式)final方法 2.修饰方法: final修饰的方法不能被重写 3.修饰变量(被修饰的变量一 ...
- Qt Framework 问题之 framework/Versions/A:bundle format unrecognized, invalid, or unsuitable
在解决标题提到的问题之后,先来介绍下Qt Framework一些基本知识. 基于QT的Mac端工程,在打包时需要对所有需要嵌入到APP的framework及dylib文件进行手动签名处理. 一.签名处 ...
- Docker从入门到掉坑(三):容器太多,操作好麻烦
前边的两篇文章里面,我们讲解了基于docker来部署基础的SpringBoot容器,如果阅读本文之前没有相关基础的话,可以回看之前的教程. Docker 从入门到掉坑 Docker从入门到掉坑(二): ...
- Java开发中常用jar包整理及使用
本文整理了我自己在Java开发中常用的jar包以及常用的API记录. <!-- https://mvnrepository.com/artifact/org.apache.commons/com ...
- HTML学习 day04
1.字体.文本声明 声明语句必须要包含在{}号之中: 属性和属性值之间用":"分隔: 当有多个属性时,用":"进行区分: 在书写属性时属性之间使用空格.换行等, ...
- 等待资源(wait_resource)解码
在调查阻塞或死锁时,你可能会遇到等待资源(wait_resource),通常等待的资源是Page或Key: waitresource=“PAGE: 6:3:70133 “waitresource=“K ...
- (四十六)golang--网络编程(简易的聊天系统)
Go主要的目标之一就是面向大规模后端服务程序,网络通信这块是服务端程序必不可少也是至关键的一部分. 网络编程有两种: (1)TCP Socket编程:是网络编程的主流,之所以叫TCP Socket编程 ...