P3302 [SDOI2013]森林

题目描述

小\(Z\)有一片森林,含有\(N\)个节点,每个节点上都有一个非负整数作为权值。初始的时候,森林中有\(M\)条边。

小Z希望执行\(T\)个操作,操作有两类:

Q x y k查询点\(x\)到点\(y\)路径上所有的权值中,第\(k\)小的权值是多少。此操作保证点\(x\)和点\(y\)连通,同时这两个节点的路径上至少有\(k\)个点。

L x y在点\(x\)和点\(y\)之间连接一条边。保证完成此操作后,仍然是一片森林。

为了体现程序的在线性,我们把输入数据进行了加密。设\(lastans\)为程序上一次输出的结果,初始的时候\(lastans\)为\(0\)。

对于一个输入的操作Q x y k,其真实操作为Q x^lastans y^lastans k^lastans

对于一个输入的操作L x y,其真实操作为L x^lastans y^lastans。其中^运算符表示异或,等价于pascal中的xor运算符。

请写一个程序來帮助小Z完成这些操作。

对于所有的数据,\(n,m,T<=8*10^4\)

.

输入输出格式

输入格式:

第一行包含一个正整数\(testcase\),表示当前测试数据的测试点编号。保证\(1<=testcase<=20\)。

第二行包含三个整数\(N\),\(M\),\(T\),分别表示节点数、初始边数、操作数。

第三行包含\(N\)个非负整数表示 \(N\)个节点上的权值。

接下来 \(M\)行,每行包含两个整数\(x\)和\(y\),表示初始的时候,点\(x\)和点\(y\)之间有一条无向边。

接下来 \(T\)行,每行描述一个操作,格式为”Q x y k“或者”L x y “,其含义见题目描述部分。

输出格式:

对于每一个第一类操作,输出一个非负整数表示答案。

说明:


先吐槽:第一行原来给的是测试点编号我以为是数据组数还T了一会儿

动态维护树上两点间第\(k\)值

LCT不能直接维护第\(k\)值,也很难嵌套其他数据结构,所以我们不考虑她

发现只有加边没有删边,考虑使用主席树启发式合并

具体来说

加边时

把节点少的主席树合并到节点多的主席树上面,复杂度\(slogs\),\(s\)为小主席树的大小,同时动态更新父节点的倍增数组,复杂度也是\(slogs\)的

查询时

进入两个点以及它们的lca和lca的爹的主席树中上上下下加加减减

总复杂度:\(O(nlog^2n)\)


Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ls ch[now][0]
#define rs ch[now][1]
#define ols ch[las][0]
#define ors ch[las][1]
const int N=3e5+10;
int ch[N*30][2],sum[N*30],tot;
int f[N][20],dep[N],n,m,n_,t,tmp,siz[N],root[N],a[N],b[N],testcase;
void updata(int now){sum[now]=sum[ls]+sum[rs];}
int rebuild(int las,int l,int r,int pos)
{
int now=++tot;
if(l==r) {sum[now]+=sum[las]+1;return now;}
int mid=l+r>>1;
if(pos<=mid)
{
ls=rebuild(ols,l,mid,pos);
rs=ors;
}
else
{
ls=ols;
rs=rebuild(ors,mid+1,r,pos);
}
updata(now);
return now;
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dfs(int now,int fa)
{
int s=1;
root[now]=rebuild(root[fa],1,n,b[now]);
f[now][0]=fa;
dep[now]=dep[fa]+1;
for(int i=1;i<=18;i++)
f[now][i]=f[f[now][i-1]][i-1];
for(int i=head[now];i;i=Next[i])
if(to[i]!=fa)
s+=dfs(to[i],now);
return s;
}
void swap(int &x,int &y){tmp=x,x=y,y=tmp;}
int rt(int now)
{
for(int i=18;~i;i--)
if(f[now][i])
now=f[now][i];
return now;
}
void Merge(int x,int y)
{
int rx=rt(x),ry=rt(y);
if(siz[rx]<siz[ry]) swap(rx,ry),swap(x,y);
add(x,y),add(y,x);
siz[rx]+=dfs(y,x);
}
int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=18;~i;i--)
if(dep[f[x][i]]>=dep[y])
x=f[x][i];
if(x==y) return x;
for(int i=18;~i;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
int query(int rt1,int rt2,int rt3,int rt4,int l,int r,int k)
{
if(l==r) return a[l];
int mid=l+r>>1,s=sum[ch[rt1][0]]+sum[ch[rt2][0]]-sum[ch[rt3][0]]-sum[ch[rt4][0]];
if(s>=k) return query(ch[rt1][0],ch[rt2][0],ch[rt3][0],ch[rt4][0],l,mid,k);
else return query(ch[rt1][1],ch[rt2][1],ch[rt3][1],ch[rt4][1],mid+1,r,k-s);
}
int main()
{
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
scanf("%d",&testcase);
tot=0,cnt=0;
scanf("%d%d%d",&n_,&m,&t);
for(int i=1;i<=n_;i++) scanf("%d",a+i),b[i]=a[i];
std::sort(a+1,a+1+n_);
n=std::unique(a+1,a+1+n_)-a-1;
for(int i=1;i<=n_;i++) b[i]=std::lower_bound(a+1,a+1+n,b[i])-a;
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
for(int i=1;i<=n_;i++)
if(!f[i][0])
siz[i]=dfs(i,0);
int lastans=0;char op[4];
for(int u,v,k,i=1;i<=t;i++)
{
scanf("%s%d%d",op,&u,&v);
u^=lastans,v^=lastans;
if(op[0]=='Q')
{
scanf("%d",&k);
k^=lastans;int lca=LCA(u,v);
printf("%d\n",lastans=query(root[u],root[v],root[lca],root[f[lca][0]],1,n,k));
}
else
Merge(u,v);
}
return 0;
}

2018.9.4

洛谷 P3302 [SDOI2013]森林 解题报告的更多相关文章

  1. 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA

    题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...

  2. [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)

    传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...

  3. 洛谷 P3302 [SDOI2013]森林

    ->题目链接 题解: #include<queue> #include<cstdio> #include<cstring> #include<iostr ...

  4. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  5. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  6. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  7. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  8. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  9. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

随机推荐

  1. 截取前后缀FOR C

    memcpy(new, old + prefix_len, sizeof(new)); memcpy(new, old, strlen(old) - suffix_len); :)

  2. Github学生包的申请

    Github Education为了大学生们更好的进行开发,进行边做边学,与一些合作伙伴和朋友一起创建GitHub学生开发者包. 里面内容非常丰富,应有尽有: AWS 亚马逊云服务 $75-$150  ...

  3. 【赛时总结】 ◇赛时·III◇ AtCoder ABC-099

    ◆赛时·III◆ ABC-099 ■唠叨■ 不要问我为什么先给ABC-100写了博客再写的ABC-099-- 莫名觉得这次比赛特别简单--虽然我并没有参加比赛,只是之后再补做的.QwQ ■试题& ...

  4. Eclipse中文乱码解决方案

    Eclipse中文乱码解决方案 1)第一个设置:window>perferences>general>workspace>text file encoding 2)Jsp编码问 ...

  5. Apache Maven(一):快速入门

    Maven 是什么? Maven 是一个项目管理和整合工具.Maven 为开发者提供了一套完整的构建生命周期框架.开发团队几乎不用花多少时间就能够自动完成工程的基础构建配置,因为 Maven 使用了一 ...

  6. 笔记--tslib 编译

    tslib 是qt启动时的一个触屏校正检验程序. 它的配置以及编译比较简单. 第一步, 下载tslib源码包: http://download.csdn.net/detail/MKNDG/329156 ...

  7. 一、MySQL数据库之简介和安装

    一.基础部分 1.数据库是简介     之前所学,数据要永久保存,比如用户注册的用户信息,都是保存于文件中,而文件只能存在于某一台机器上. 如果我们不考虑从文件中读取数据的效率问题,并且假设我们的程序 ...

  8. JS:关于JS字面量及其容易忽略的12个小问题

    简要 问题1:不能使用typeof判断一个null对象的数据类型 问题2:用双等号判断两个一样的变量,可能返回false 问题3:对于非十进制,如果超出了数值范围,则会报错 问题4:JS浮点数并不精确 ...

  9. springboot遇见问题总结

    今天开始学习创建springboot项目 问题1: 产生异常: 创建项目目录: demo代码: 代码Controller import org.springframework.web.bind.ann ...

  10. wireshark 安装

    #yum install wireshark 安装完毕后 whereis wireshark 找不到可执行程序 /bin /sbin /usr/bin /usr/sbin下均没有. 实际上wiresh ...