洛谷 P3302 [SDOI2013]森林 解题报告
P3302 [SDOI2013]森林
题目描述
小\(Z\)有一片森林,含有\(N\)个节点,每个节点上都有一个非负整数作为权值。初始的时候,森林中有\(M\)条边。
小Z希望执行\(T\)个操作,操作有两类:
Q x y k
查询点\(x\)到点\(y\)路径上所有的权值中,第\(k\)小的权值是多少。此操作保证点\(x\)和点\(y\)连通,同时这两个节点的路径上至少有\(k\)个点。
L x y
在点\(x\)和点\(y\)之间连接一条边。保证完成此操作后,仍然是一片森林。
为了体现程序的在线性,我们把输入数据进行了加密。设\(lastans\)为程序上一次输出的结果,初始的时候\(lastans\)为\(0\)。
对于一个输入的操作Q x y k
,其真实操作为Q x^lastans y^lastans k^lastans
。
对于一个输入的操作L x y
,其真实操作为L x^lastans y^lastans
。其中^运算符表示异或,等价于pascal中的xor运算符。
请写一个程序來帮助小Z完成这些操作。
对于所有的数据,\(n,m,T<=8*10^4\)
.
输入输出格式
输入格式:
第一行包含一个正整数\(testcase\),表示当前测试数据的测试点编号。保证\(1<=testcase<=20\)。
第二行包含三个整数\(N\),\(M\),\(T\),分别表示节点数、初始边数、操作数。
第三行包含\(N\)个非负整数表示 \(N\)个节点上的权值。
接下来 \(M\)行,每行包含两个整数\(x\)和\(y\),表示初始的时候,点\(x\)和点\(y\)之间有一条无向边。
接下来 \(T\)行,每行描述一个操作,格式为”Q x y k
“或者”L x y
“,其含义见题目描述部分。
输出格式:
对于每一个第一类操作,输出一个非负整数表示答案。
说明:
先吐槽:第一行原来给的是测试点编号我以为是数据组数还T了一会儿
动态维护树上两点间第\(k\)值
LCT不能直接维护第\(k\)值,也很难嵌套其他数据结构,所以我们不考虑她
发现只有加边没有删边,考虑使用主席树启发式合并
具体来说
加边时
把节点少的主席树合并到节点多的主席树上面,复杂度\(slogs\),\(s\)为小主席树的大小,同时动态更新父节点的倍增数组,复杂度也是\(slogs\)的
查询时
进入两个点以及它们的lca和lca的爹的主席树中上上下下加加减减
总复杂度:\(O(nlog^2n)\)
Code:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ls ch[now][0]
#define rs ch[now][1]
#define ols ch[las][0]
#define ors ch[las][1]
const int N=3e5+10;
int ch[N*30][2],sum[N*30],tot;
int f[N][20],dep[N],n,m,n_,t,tmp,siz[N],root[N],a[N],b[N],testcase;
void updata(int now){sum[now]=sum[ls]+sum[rs];}
int rebuild(int las,int l,int r,int pos)
{
int now=++tot;
if(l==r) {sum[now]+=sum[las]+1;return now;}
int mid=l+r>>1;
if(pos<=mid)
{
ls=rebuild(ols,l,mid,pos);
rs=ors;
}
else
{
ls=ols;
rs=rebuild(ors,mid+1,r,pos);
}
updata(now);
return now;
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dfs(int now,int fa)
{
int s=1;
root[now]=rebuild(root[fa],1,n,b[now]);
f[now][0]=fa;
dep[now]=dep[fa]+1;
for(int i=1;i<=18;i++)
f[now][i]=f[f[now][i-1]][i-1];
for(int i=head[now];i;i=Next[i])
if(to[i]!=fa)
s+=dfs(to[i],now);
return s;
}
void swap(int &x,int &y){tmp=x,x=y,y=tmp;}
int rt(int now)
{
for(int i=18;~i;i--)
if(f[now][i])
now=f[now][i];
return now;
}
void Merge(int x,int y)
{
int rx=rt(x),ry=rt(y);
if(siz[rx]<siz[ry]) swap(rx,ry),swap(x,y);
add(x,y),add(y,x);
siz[rx]+=dfs(y,x);
}
int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=18;~i;i--)
if(dep[f[x][i]]>=dep[y])
x=f[x][i];
if(x==y) return x;
for(int i=18;~i;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
int query(int rt1,int rt2,int rt3,int rt4,int l,int r,int k)
{
if(l==r) return a[l];
int mid=l+r>>1,s=sum[ch[rt1][0]]+sum[ch[rt2][0]]-sum[ch[rt3][0]]-sum[ch[rt4][0]];
if(s>=k) return query(ch[rt1][0],ch[rt2][0],ch[rt3][0],ch[rt4][0],l,mid,k);
else return query(ch[rt1][1],ch[rt2][1],ch[rt3][1],ch[rt4][1],mid+1,r,k-s);
}
int main()
{
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
scanf("%d",&testcase);
tot=0,cnt=0;
scanf("%d%d%d",&n_,&m,&t);
for(int i=1;i<=n_;i++) scanf("%d",a+i),b[i]=a[i];
std::sort(a+1,a+1+n_);
n=std::unique(a+1,a+1+n_)-a-1;
for(int i=1;i<=n_;i++) b[i]=std::lower_bound(a+1,a+1+n,b[i])-a;
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
for(int i=1;i<=n_;i++)
if(!f[i][0])
siz[i]=dfs(i,0);
int lastans=0;char op[4];
for(int u,v,k,i=1;i<=t;i++)
{
scanf("%s%d%d",op,&u,&v);
u^=lastans,v^=lastans;
if(op[0]=='Q')
{
scanf("%d",&k);
k^=lastans;int lca=LCA(u,v);
printf("%d\n",lastans=query(root[u],root[v],root[lca],root[f[lca][0]],1,n,k));
}
else
Merge(u,v);
}
return 0;
}
2018.9.4
洛谷 P3302 [SDOI2013]森林 解题报告的更多相关文章
- 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA
题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
- 洛谷 P3302 [SDOI2013]森林
->题目链接 题解: #include<queue> #include<cstdio> #include<cstring> #include<iostr ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
随机推荐
- 1801: [Ahoi2009]chess 中国象棋
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2520 Solved: 1524[Submit][Status][Discuss] Descripti ...
- 《JSON笔记之二》----封装JSONUtil
许多java开发人员对于fastjson再也熟悉不过了,这是alibaba开源的依赖,使用fastjson可以使我们很容易的把请求json串转换成为我们所需要的对象.list.map等对象格式,对于开 ...
- python__高级 : 类当作装饰器
类在创建对象时,会调用 __init__ 初始化一些东西 , 然后 如果类中定义了 __call__ 方法,可以直接用 对象() 这种方法调用,所以可以用类来装饰函数: class Test(ob ...
- 分析setup/hold电气特性从D触发器内部结构角度
上图是用与非门实现的D触发器的逻辑结构图,CP是时钟信号输入端,S和R分别是置位和清零信号,低有效; D是信号输入端,Q信号输出端; 这里先说一下D触发器实现的原理:(假设S和R信号均为高,不进行置位 ...
- mysql悲观锁与乐观锁
简介 数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 用途 乐观锁和悲观锁是并发控制主要采用的技术手段.无论是悲观 ...
- windows下使用curl.exe模拟ajax请求
curl 是一般linux发行版中都带有的小工具,利用这个工具可以很方便的下载文件,我一般使用这个工具来查看某个页面相应的HTTP头信息,在Windows系统中我们也一样可以使用这个工具,如果不需要支 ...
- JDK学习---深入理解java中的LinkedList
本文参考资料: 1.<大话数据结构> 2.http://blog.csdn.net/jzhf2012/article/details/8540543 3.http://blog.csdn. ...
- POJ 3977 折半枚举
链接: http://poj.org/problem?id=3977 题意: 给你n个数,n最大35,让你从中选几个数,不能选0个,使它们和的绝对值最小,如果有一样的,取个数最小的 思路: 子集个数共 ...
- python——PIL(图像处理库)
PIL(Python Imaging Library,python图像处理库)提供了通用的图像处理功能,以及大量有用的基本图像操作,如图像缩放,裁剪,旋转,颜色转换等. 1.打开图像并显示 from ...
- centos安装Linux
CentOS下安装Redis Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服务器端计 ...