storm源码分析之topology提交过程
storm集群上运行的是一个个topology,一个topology是spouts和bolts组成的图。当我们开发完topology程序后将其打成jar包,然后在shell中执行storm jar xxxxxx.jar xxxxxxxClass就可以将jar包上传到storm集群的nimbus上,并执行topology。本文主要分析下topology的jar包是如何上传到nimbus上的。首先我们从storm的jar命令入手,jar命令的实现位于storm根目录的bin/storm文件里。定义如下:
"""Syntax: [storm jar topology-jar-path class ...]
Runs the main method of class with the specified arguments.
The storm jars and configs in ~/.storm are put on the classpath.
The process is configured so that StormSubmitter
(http://nathanmarz.github.com/storm/doc/backtype/storm/StormSubmitter.html)
will upload the jar at topology-jar-path when the topology is submitted.
"""
exec_storm_class(
klass,
jvmtype="-client",
extrajars=[jarfile, USER_CONF_DIR, STORM_DIR + "/bin"],
args=args,
jvmopts=[' '.join(filter(None, [JAR_JVM_OPTS, "-Dstorm.jar=" + jarfile]))])
jar命令是由python实现的,很奇怪为什么不用clojure实现呢?(不得而知)。jarfile表示jar包的位置;klass表示topology的入口,也就是有main函数的类;*args表示传递给main函数的参数。jvmtype="-client"表示指定jvm类型为client类型(jvm有两种类型client和server,服务器端默认为server类型);extrajars集合用于存放编译topology的jar包时,所有依赖jar包的路径;jvmopts集合存放以jvm参数,这里比较重要的是-Dstorm.jar参数,这个参数的值是jarfile,这样在运行submitTopology方法时就可以通过storm.jar参数获得jar包的路径了(通过jvm参数进行方法参数传递)exec_storm_class函数的逻辑比较简单,具体实现如下:
global CONFFILE
all_args = [
"java", jvmtype, get_config_opts(),
"-Dstorm.home=" + STORM_DIR,
"-Djava.library.path=" + confvalue("java.library.path", extrajars),
"-Dstorm.conf.file=" + CONFFILE,
"-cp", get_classpath(extrajars),
] + jvmopts + [klass] + list(args)
print "Running: " + " ".join(all_args)
if fork:
os.spawnvp(os.P_WAIT, "java", all_args)
else:
os.execvp("java", all_args) # replaces the current process and never returns
get_config_opts()获取jvm的默认配置信息,confvalue("java.library.path", extrajars)获取storm使用的本地库JZMQ加载路径,get_classpath(extrajars)获取所有依赖jar包的完整路径,然后拼接一个java -cp命令运行topology的main方法。接下来程序执行流程转移到topology的main方法内,我们以storm-starter项目中的wordCountTopology的main方法为例:
) );
);
);
cluster.shutdown();
}
}
main方法构建topology后,调用StormSubmitter类的submitTopology方法提交topology。submitTopology方法如下:
* Submits a topology to run on the cluster. A topology runs forever or until
* explicitly killed.
*
*
* @param name the name of the storm.
* @param stormConf the topology-specific configuration. See {@link Config}.
* @param topology the processing to execute.
* @throws AlreadyAliveException if a topology with this name is already running
* @throws InvalidTopologyException if an invalid topology was submitted
*/
public static void submitTopology(String name, Map stormConf, StormTopology topology)
throws AlreadyAliveException, InvalidTopologyException {
submitTopology(name, stormConf, topology, null);
}
/**
* Submits a topology to run on the cluster. A topology runs forever or until
* explicitly killed.
*
*
* @param name the name of the storm.
* @param stormConf the topology-specific configuration. See {@link Config}.
* @param topology the processing to execute.
* @param options to manipulate the starting of the topology
* @throws AlreadyAliveException if a topology with this name is already running
* @throws InvalidTopologyException if an invalid topology was submitted
*/
public static void submitTopology(String name, Map stormConf, StormTopology topology, SubmitOptions opts)
throws AlreadyAliveException, InvalidTopologyException {
if(!Utils.isValidConf(stormConf)) {
throw new IllegalArgumentException("Storm conf is not valid. Must be json-serializable");
}
stormConf = new HashMap(stormConf);
stormConf.putAll(Utils.readCommandLineOpts());
Map conf = Utils.readStormConfig();
conf.putAll(stormConf);
try {
String serConf = JSONValue.toJSONString(stormConf);
if(localNimbus!=null) {
LOG.info("Submitting topology " + name + " in local mode");
localNimbus.submitTopology(name, null, serConf, topology);
} else {
NimbusClient client = NimbusClient.getConfiguredClient(conf);
if(topologyNameExists(conf, name)) {
throw new RuntimeException("Topology with name `" + name + "` already exists on cluster");
}
submitJar(conf);
try {
LOG.info("Submitting topology " + name + " in distributed mode with conf " + serConf);
if(opts!=null) {
client.getClient().submitTopologyWithOpts(name, submittedJar, serConf, topology, opts);
} else {
// this is for backwards compatibility
client.getClient().submitTopology(name, submittedJar, serConf, topology);
}
} catch(InvalidTopologyException e) {
LOG.warn("Topology submission exception", e);
throw e;
} catch(AlreadyAliveException e) {
LOG.warn("Topology already alive exception", e);
throw e;
} finally {
client.close();
}
}
LOG.info("Finished submitting topology: " + name);
} catch(TException e) {
throw new RuntimeException(e);
}
}
submitTopology方法主要完成三件工作:
1. 配置参数
把命令行参数放在stormConf, 从conf/storm.yaml读取配置参数到conf, 再把stormConf也put到conf, 可见命令行参数的优先级更高,将stormConf转化为Json, 因为这个配置是要发送到服务器的
2. 调用submitJar方法
private static void submitJar(Map conf) {
if(submittedJar==null) {
LOG.info("Jar not uploaded to master yet. Submitting jar...");
String localJar = System.getProperty("storm.jar");
submittedJar = submitJar(conf, localJar);
} else {
LOG.info("Jar already uploaded to master. Not submitting jar.");
}
}
System.getProperty("storm.jar")获取jvm参数storm.jar的值,即topology jar包的路径,然后调用重载方法submitJar。
client.getClient().uploadChunk(uploadLocation, ByteBuffer.wrap(toSubmit));
}
client.getClient().finishFileUpload(uploadLocation);
LOG.info("Successfully uploaded topology jar to assigned location: " + uploadLocation);
return uploadLocation;
} catch(Exception e) {
throw new RuntimeException(e);
} finally {
client.close();
}
}
StormSubmitter的本质是个Thrift Client,而Nimbus则是Thrift Server,所以所有的操作都是通过Thrift RPC来完成,submitJar首先创建client,然后调用nimbus thrift server的beginFileUpload()方法获取nimbus存放jar的目录。beginFileUpload函数如下:
(let [fileloc (str (inbox nimbus) "/stormjar-" (uuid) ".jar")]
(.put (:uploaders nimbus)
fileloc
(Channels/newChannel (FileOutputStream. fileloc)))
(log-message "Uploading file from client to " fileloc)
fileloc
))
(inbox nimbus)函数里面又调用了master-inbox函数,master-inbox主要创建storm.local.dir的值/inbox目录,并返回完整目录名,所以topology jar包的将会通过uploadChunk方法上传到nimbus上的storm.local.dir的值/inbox/stormjar-32位uuid.jar。
3. 生成thrift client并调用nimbus thrift server的submitTopologyWithOpts或submitTopology方法(submitTopologyWithOpts或submitTopology方法定义在Nimbus.clj中),submitTopologyWithOpts如下:
[this ^String storm-name ^String uploadedJarLocation ^String serializedConf ^StormTopology topology
^SubmitOptions submitOptions]
(try
(assert (not-nil? submitOptions))
(validate-topology-name! storm-name)
(check-storm-active! nimbus storm-name false)
(let [topo-conf (from-json serializedConf)]
(try
(validate-configs-with-schemas topo-conf)
(catch IllegalArgumentException ex
(throw (InvalidTopologyException. (.getMessage ex)))))
(.validate ^backtype.storm.nimbus.ITopologyValidator (:validator nimbus)
storm-name
topo-conf
topology))
(swap! (:submitted-count nimbus) inc)
(let [storm-id (str storm-name "-" @(:submitted-count nimbus) "-" (current-time-secs))
storm-conf (normalize-conf
conf
(-> serializedConf
from-json
(assoc STORM-ID storm-id)
(assoc TOPOLOGY-NAME storm-name))
topology)
total-storm-conf (merge conf storm-conf)
topology (normalize-topology total-storm-conf topology)
storm-cluster-state (:storm-cluster-state nimbus)]
(system-topology! total-storm-conf topology) ;; this validates the structure of the topology
(log-message "Received topology submission for " storm-name " with conf " storm-conf)
;; lock protects against multiple topologies being submitted at once and
;; cleanup thread killing topology in b/w assignment and starting the topology
(locking (:submit-lock nimbus)
(setup-storm-code conf storm-id uploadedJarLocation storm-conf topology)
(.setup-heartbeats! storm-cluster-state storm-id)
(let [thrift-status->kw-status {TopologyInitialStatus/INACTIVE :inactive
TopologyInitialStatus/ACTIVE :active}]
(start-storm nimbus storm-name storm-id (thrift-status->kw-status (.get_initial_status submitOptions))))
(mk-assignments nimbus)))
(catch Throwable e
(log-warn-error e "Topology submission exception. (topology name='" storm-name "')")
(throw e))))
storm-name表示topology的名字,uploadedJarLocation表示jar包在nimbus上的位置,serializedConf表示topology的序列化的配置信息,topology参数表示thrift结构的topology,topology结构定义在storm.thrift中,如下:
}
spouts存放spout id和spout的键值对,bolts存放bolt id和bolt的键值对,StateSpoutSpec暂未实现。SpoutSpec定义如下:
Bolt定义如下:
}
Bolt和Spout的结构相同,都是由1个ComponentObject结构和1个ComponentCommon结构组成。ComponentObject定义如下:
}
ComponentObject即是bolt的实现实体,它可以是以下三个类型之一:
1、1个序列化的java对象(这个对象实现IBolt接口)
2、1个ShellComponent对象,意味着bolt是由其他语言实现的。如果以这种方式来定义1个bolt,Storm将会实例化1个ShellBolt对象来
负责处理基于JVM的worker进程与非JVM的component(即该bolt)实现体之间的通讯。
3、1个JavaObject结构,这个结构告诉Storm实例化这个bolt所需要的classname和构造函数参数。这一点在你想用非JVM语言来定义topology时比较有用。这样,在你使用非JVM语言来定义topology时就可以做到既使用基于 JVM的spout或bolt,同时又不需要创建并序列化它们的Java对象。
ComponentCommon定义如下:
}
GlobalStreamId定义如下:
#Going to need to add an enum for the stream type (NORMAL or FAILURE)
}
ComponentCommon定义了这个component的其他所有属性。包括:
1、这个component接收什么stream(被定义在1个component_id到stream_id的map里,在stream做分组时用到)
2、这个component发射什么stream以及stream的元数据(是否是direct stream,stream中field的声明)
3、这个component的并行度
4、这个component的配置项configuration
(assert (not-nil? submitOptions))如果submitOptions为nil,那么assert将会抛出java.lang.AssertionError,(validate-topology-name! storm-name)验证topology的名字,validate-topology-name!定义如下:
(if (some #(.contains name %) DISALLOWED-TOPOLOGY-NAME-STRS)
(throw (InvalidTopologyException.
(str "Topology name cannot contain any of the following: " (pr-str DISALLOWED-TOPOLOGY-NAME-STRS))))
(if (clojure.string/blank? name)
(throw (InvalidTopologyException.
("Topology name cannot be blank"))))))
DISALLOWED-TOPOLOGY-NAME-STRS定义如下:
包含了不允许出现在topology名字中的特殊字符,some函数的第一个参数是一个匿名函数,对DISALLOWED-TOPOLOGY-NAME-STRS集合中的每个元素应用该匿名函数,遇到第一个true则返回true。validate-topology-name!函数主要检查topology的名字中是否包含"非法字符"。check-storm-active!函数用于检查该topology的状态是否是"active"。定义如下:
(if (= (not active?)
(storm-active? (:storm-cluster-state nimbus)
storm-name))
(if active?
(throw (NotAliveException. (str storm-name " is not alive")))
(throw (AlreadyAliveException. (str storm-name " is already active"))))
))
nimbus是一个保存了nimbus thrift server当前状态的map,这个map是由nimbus-data函数生成的,nimbus-data函数如下:
"Error when processing an event")
))
:scheduler (mk-scheduler conf inimbus)
}))
conf保存了storm集群的配置信息,inimbus表示当前nimbus实例,cluster/mk-storm-cluster-state返回一个实现了StormClusterState协议的实例。storm-active?函数定义如下:
(not-nil? (get-storm-id storm-cluster-state storm-name)))
通过调用get-storm-id函数获取指定topology名字的topology id,如果id存在则返回true,否则返回false。get-storm-id函数如下:
(let [active-storms (.active-storms storm-cluster-state)]
(find-first
#(= storm-name (:storm-name (.storm-base storm-cluster-state % nil)))
active-storms)
))
active-storms函数获取zookeeper中/storms/的所有children,/storms/{topology-id}中存放当前正在运行的topology信息。保存的内容参考common.clj中的类StormBase。
find-first函数返回名字等于storm-name的第一个topology的id。当我们正确提交topology时,由于zookeeper中的/storms中不存在与之对应的{topology-id}文件,所以check-storm-active!函数的第一个if的条件表达式为(= true true)。进而通过check-storm-active!函数的检查。将topology的配置信息绑定到topo-conf,validate-configs-with-schemas函数验证配置信息的正确性,validate-configs-with-schemas定义如下:
[conf]
(doseq [[k v] conf
:let [schema (CONFIG-SCHEMA-MAP k)]]
(if (not (nil? schema))
(.validateField schema k v))))
CONFIG-SCHEMA-MAP定义如下:
;; Config fields must have a _SCHEMA field defined
(def CONFIG-SCHEMA-MAP
(->> (.getFields Config)
(filter #(not (re-matches #".*_SCHEMA$" (.getName %))))
(map (fn [f] [(.get f nil)
(get-FieldValidator
(-> Config
(.getField (str (.getName f) "_SCHEMA"))
(.get nil)))]))
(into {})))
Config.java中主要有两类静态变量:一类是配置信息,一类是配置信息对应的校验器,校验器属性以_SCHEMA结尾。CONFIG-SCHEMA-MAP中存放了配置信息变量名和对应校验器的键值对config-string -> validator。
validate-configs-with-schemas函数就是根据配置信息名获取对应校验器,然后对配置信息值进行校验。相关校验器请查看ConfigValidation类的内部类FieldValidator。(:validator nimbus)返回一个实现了backtype.storm.nimbus.ITopologyValidator接口的实例(backtype.storm.nimbus.DefaultTopologyValidators实例)并调用其validate方法。backtype.storm.nimbus.DefaultTopologyValidators类如下:
@Override
public void prepare(Map StormConf){
}
@Override
public void validate(String topologyName, Map topologyConf, StormTopology topology) throws InvalidTopologyException {
}
}
默认情况下validate方法是一个空实现。
swap!函数用于将atom(原子类型,与java中的原子类型相同)类型的(:submitted-count nimbus)加1,保存已提交topology的个数。storm-id绑定了topology的id。storm-conf绑定topology配置信息和集群配置信息合并后序列化器、需要序列化的类、acker的个数和最大任务并行度配置信息。total-storm-conf绑定全部配置信息。normalize-topology函数主要功能就是为topology添加"topology.tasks"(task总数)配置信息。
normalize-topology定义如下:
(let [ret (.deepCopy topology)]
(doseq [[_ component] (all-components ret)]
(.set_json_conf
(.get_common component)
(->> {TOPOLOGY-TASKS (component-parallelism storm-conf component)}
(merge (component-conf component))
to-json )))
ret ))
ret绑定一个topology的深度复制,all-components函数返回该topology的所有组件的id和spout/bolt对象的键值对,然后通过调用get_common方法获取spot/bolt对象的ComponentCommon属性,->>是clojure中的一个宏,作用就是将{......}作为merge函数的最后一个参数,然后将merge函数的返回值作为to-json函数的最后一个参数,component-parallelism函数定义如下:
(let [storm-conf (merge storm-conf (component-conf component))
num-tasks (or (storm-conf TOPOLOGY-TASKS) (num-start-executors component))
max-parallelism (storm-conf TOPOLOGY-MAX-TASK-PARALLELISM)
]
(if max-parallelism
(min max-parallelism num-tasks)
num-tasks)))
component-parallelism是个私有函数,主要功能就是确定"topology.tasks"的值,num-start-executors函数获取spout/bolt的并行度,没有设置并行度时默认值为1,num-tasks绑定该topology的任务数,max-parallelism绑定最大任务数,最后num-tasks和max-parallelism中较小的。normalize-topology函数会将添加了"topology.tasks"的配置信息保存到spout/bolt的ComponentCommon属性的json_conf中,并返回修改后的topology。
system-topology!函数定义如下:
(validate-basic! topology)
(let [ret (.deepCopy topology)]
(add-acker! storm-conf ret)
(add-metric-components! storm-conf ret)
(add-system-components! storm-conf ret)
(add-metric-streams! ret)
(add-system-streams! ret)
(validate-structure! ret)
ret
))
validate-basic!验证topology的基本信息,add-acker!添加acker bolt,add-acker!函数定义如下:
(let [num-executors (if (nil? (storm-conf TOPOLOGY-ACKER-EXECUTORS)) (storm-conf TOPOLOGY-WORKERS) (storm-conf TOPOLOGY-ACKER-EXECUTORS))
acker-bolt (thrift/mk-bolt-spec* (acker-inputs ret)
(new backtype.storm.daemon.acker)
{ACKER-ACK-STREAM-ID (thrift/direct-output-fields ["id"])
ACKER-FAIL-STREAM-ID (thrift/direct-output-fields ["id"])
}
:p num-executors
:conf {TOPOLOGY-TASKS num-executors
TOPOLOGY-TICK-TUPLE-FREQ-SECS (storm-conf TOPOLOGY-MESSAGE-TIMEOUT-SECS)})]
(dofor [[_ bolt] (.get_bolts ret)
:let [common (.get_common bolt)]]
(do
(.put_to_streams common ACKER-ACK-STREAM-ID (thrift/output-fields ["id" "ack-val"]))
(.put_to_streams common ACKER-FAIL-STREAM-ID (thrift/output-fields ["id"]))
))
(dofor [[_ spout] (.get_spouts ret)
:let [common (.get_common spout)
spout-conf (merge
(component-conf spout)
{TOPOLOGY-TICK-TUPLE-FREQ-SECS (storm-conf TOPOLOGY-MESSAGE-TIMEOUT-SECS)})]]
(do
;; this set up tick tuples to cause timeouts to be triggered
(.set_json_conf common (to-json spout-conf))
(.put_to_streams common ACKER-INIT-STREAM-ID (thrift/output-fields ["id" "init-val" "spout-task"]))
(.put_to_inputs common
(GlobalStreamId. ACKER-COMPONENT-ID ACKER-ACK-STREAM-ID)
(thrift/mk-direct-grouping))
(.put_to_inputs common
(GlobalStreamId. ACKER-COMPONENT-ID ACKER-FAIL-STREAM-ID)
(thrift/mk-direct-grouping))
))
(.put_to_bolts ret "__acker" acker-bolt)
))
根据是否配置"topology.acker.executors"获取acker线程的个数,如果没有配置num-executors绑定"topology.workers"的值,否则绑定"topology.acker.executors"的值。acker-bolt绑定生成的acker bolt对象。acker-inputs函数定义如下:
(let [bolt-ids (.. topology get_bolts keySet)
spout-ids (.. topology get_spouts keySet)
spout-inputs (apply merge
(for [id spout-ids]
{[id ACKER-INIT-STREAM-ID] ["id"]}
))
bolt-inputs (apply merge
(for [id bolt-ids]
{[id ACKER-ACK-STREAM-ID] ["id"]
[id ACKER-FAIL-STREAM-ID] ["id"]}
))]
(merge spout-inputs bolt-inputs)))
bolt-ids绑定topology所有bolt的id,spout-ids绑定所有spout的id,spout-inputs绑定来自spout的输入流,bolt-inputs绑定来自bolt的输入流,最后返回合并后的输入流(一个map对象)。ACKER-ACK-STREAM-ID和ACKER-FAIL-STREAM-ID表示acker的输出流。TOPOLOGY-TICK-TUPLE-FREQ-SECS表示tick tuple的频率,初始值为消息超时的时间。第一个dofor语句为每个bolt添加ACKER-ACK-STREAM-ID和ACKER-FAIL-STREAM-ID输出流用于将ack value发送个acker bolt,第二个dofor为每个spout设置了tick tuple的发送频率,并且设置了发送给acker bolt的ACKER-INIT-STREAM-ID输出流和来自ackerblot的两个输入流。这样acker bolt就可以与spout和bolt进行ack信息通信了。add-metric-components!函数主要功能就是将metric bolts添加到topology定义中。metric bolt主要用于统计线程executor相关的信息。add-metric-components!函数定义如下:
(metrics-consumer-register-ids storm-conf)
(get storm-conf TOPOLOGY-METRICS-CONSUMER-REGISTER))))
component-ids-that-emit-metrics绑定包括system bolt在内的所有spout和bolt的id,inputs绑定了metric bolt的输入流,并且使用shuffle grouping。mk-bolt-spec绑定一个匿名函数,metrics-consumer-register-ids函数为每个metric consumer对象产生一个component id列表,get函数返回所有metric consumer对象,map函数返回component id和metric consumer对象集合的列表([component-id metric-consumer] [component-id metric-consumer]......)。add-system-components!函数主要功能是将system bolt添加到topology定义中。system bolt用于统计与进程worker相关的信息,如内存使用率,gc情况,网络吞吐量等。每个进程worker中只有一个system bolt。add-system-components!函数定义如下:
})]
(.put_to_bolts topology SYSTEM-COMPONENT-ID system-bolt-spec)))
从thrift/mk-bolt-spec*函数的第一个参数{}我们可以发现system bolt没有输入流,从第三个参数可以发现它有两个输出流用于发送tick tuple,它的并行度为0,因为system bolt是与进程worker相关的,所以没有必要指定并行度。同时他也不需要执行任何task。add-metric-streams!函数主要功能用于给topology添加metric streams定义,add-metric-streams!定义如下:
(doseq [[_ component] (all-components topology)
:let [common (.get_common component)]]
(.put_to_streams common METRICS-STREAM-ID
(thrift/output-fields ["task-info" "data-points"]))))
给spout和bolt添加METRICS-STREAM-ID标示的metric stream。add-system-streams!函数与add-metric-streams!相似,给spout和bolt添加SYSTEM-STREAM-ID标示的system stream。submitTopologyWithOpts函数在调用system-topology!函数后,首先加锁,然后调用setup-storm-code函数,该函数的主要功能就是将上传给nimbus的jar包、topology和配置信息拷贝到{storm.local.dir}/nimbus/stormdist/{topology id}目录中,定义如下:
(let [stormroot (master-stormdist-root conf storm-id)]
(FileUtils/forceMkdir (File. stormroot))
(FileUtils/cleanDirectory (File. stormroot))
(setup-jar conf tmp-jar-location stormroot)
(FileUtils/writeByteArrayToFile (File. (master-stormcode-path stormroot)) (Utils/serialize topology))
(FileUtils/writeByteArrayToFile (File. (master-stormconf-path stormroot)) (Utils/serialize storm-conf))
))
setup-jar函数将{storm.local.dir}/nimbus/inbox/中的jar包拷贝到{storm.local.dir}/nimbus/stormdist/{topology id}目录,并重命名为stormjar.jar。FileUtils/writeByteArrayToFile将topology对象和storm-conf序列化后分别保存到stormcode.ser和stormconf.ser。setup-heartbeats!函数定义在cluster.clj文件中,是StormClusterState协议的一个函数,主要功能就是在zookeeper上创建该topology用于存放心跳信息的目录。心跳目录:
/storm/workerbeats/{topology id}/。
start-storm函数的主要功能读取整个集群的配置信息、nimbus的配置信息、从stormconf.ser反序列化topology配置信息和从stormcode.ser反序列化出topology,然后通过调用activate-storm!函数将topology的元数据StormBase对象写入zookeeper的/storm/storms/{topology id}文件中。定义如下:
{:pre [(#{:active :inactive} topology-initial-status)]}
(let [storm-cluster-state (:storm-cluster-state nimbus)
conf (:conf nimbus)
storm-conf (read-storm-conf conf storm-id)
topology (system-topology! storm-conf (read-storm-topology conf storm-id))
num-executors (->> (all-components topology) (map-val num-start-executors))]
(log-message "Activating " storm-name ": " storm-id)
(.activate-storm! storm-cluster-state
storm-id
(StormBase. storm-name
(current-time-secs)
{:type topology-initial-status}
(storm-conf TOPOLOGY-WORKERS)
num-executors))))
submitTopologyWithOpts函数最后调用mk-assignments函数进行任务分配。任务分配是stom架构的重要组成部分。鉴于篇幅问题,有关任务分配的源码分析会在之后的文章中讲解。
storm源码分析之topology提交过程的更多相关文章
- storm源码分析之任务分配--task assignment
在"storm源码分析之topology提交过程"一文最后,submitTopologyWithOpts函数调用了mk-assignments函数.该函数的主要功能就是进行topo ...
- Storm源码分析--Nimbus-data
nimbus-datastorm-core/backtype/storm/nimbus.clj (defn nimbus-data [conf inimbus] (let [forced-schedu ...
- JStorm与Storm源码分析(二)--任务分配,assignment
mk-assignments主要功能就是产生Executor与节点+端口的对应关系,将Executor分配到某个节点的某个端口上,以及进行相应的调度处理.代码注释如下: ;;参数nimbus为nimb ...
- JStorm与Storm源码分析(一)--nimbus-data
Nimbus里定义了一些共享数据结构,比如nimbus-data. nimbus-data结构里定义了很多公用的数据,请看下面代码: (defn nimbus-data [conf inimbus] ...
- JStorm与Storm源码分析(三)--Scheduler,调度器
Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...
- JStorm与Storm源码分析(四)--均衡调度器,EvenScheduler
EvenScheduler同DefaultScheduler一样,同样实现了IScheduler接口, 由下面代码可以看出: (ns backtype.storm.scheduler.EvenSche ...
- MyBatis 源码分析 - 映射文件解析过程
1.简介 在上一篇文章中,我详细分析了 MyBatis 配置文件的解析过程.由于上一篇文章的篇幅比较大,加之映射文件解析过程也比较复杂的原因.所以我将映射文件解析过程的分析内容从上一篇文章中抽取出来, ...
- Spring源码分析之`BeanFactoryPostProcessor`调用过程
前文传送门: Spring源码分析之预启动流程 Spring源码分析之BeanFactory体系结构 本文内容: AbstractApplicationContext#refresh前部分的一点小内容 ...
- Spring Ioc源码分析系列--Bean实例化过程(一)
Spring Ioc源码分析系列--Bean实例化过程(一) 前言 上一篇文章Spring Ioc源码分析系列--Ioc容器注册BeanPostProcessor后置处理器以及事件消息处理已经完成了对 ...
随机推荐
- 【leetcode刷题笔记】Decode Ways
A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...
- Cache-Control常用类型
可缓存性 no-cache 强制所有缓存了此响应的缓存用户,在使用已存储的缓存数据前,发送条件请求到原始服务器,若未过期,则使用缓存数据,否则重新获取 no-store 不存储有关客户端请求或服务器响 ...
- mysql 索引技巧
索引是快速搜索的关键.MySQL索引的建立对于MySQL的高效运行是很重要的.下面介绍几种常见的MySQL索引类型. 在数据库表中,对字段建立索引可以大大提高查询速度.假如我们创建了一个 mytabl ...
- Hadoop切换namenode为active
hadoop切换namenode为active 进入hadoop/bin目录下 ./yarn rmadmin -transitionToActive --forcemanual rm1 重新启动zkf ...
- 理解VMware虚拟网络
简述:VMware虚拟网络概述.实现虚拟网络上网 Part0 子网掩码.DHCP.NAT,这些点请自行百度,百度百科讲的很清晰. Part1 转载:本文出自 "王春海的博客" 博客 ...
- SpringBoot_04_热部署
二.参考资料 1.Spring Boot 系列(六)web开发-Spring Boot 热部署
- BEC listen and translation exercise 35
高中听力: At five o'clock, we have afternoon tea, but we don't have it in the kitchen. Father's Day is t ...
- web前端绘制0.5像素的几种方法
最近完成了公司安排的移动web触屏开发,期间涉及到在移动设备上显示线条,最开始采用PC常用的css board属性来显示1个像素的线条,但是发现在移动设备上并不美观,参考淘宝.京东的触屏发现它们均是采 ...
- zoj1360/poj1328 Radar Installation(贪心)
对每个岛屿,能覆盖它的雷达位于线段[x-sqrt(d*d-y*y),x+sqrt(d*d+y*y)],那么把每个岛屿对应的线段求出来后,其实就转化成了经典的贪心法案例:区间选点问题.数轴上有n个闭区间 ...
- inux命令学习笔记(13):less 命令
less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大. less 的用法比起 more 更加的有弹性.在 more 的时候,我们并没有办法向前面 ...