题意

基环树上找到一个点(可以在边上)使得它到树上最远点的距离最小,输出最小距离

题解

如果是一棵树,答案就是树的直径\(/2\)

如果是基环树,那么很好证明删去环上的某一条边是不影响答案的。于是断环为链,单调队列维护\(dep+sum,dep-sum\)的最大值和次大值,然后算直径,如果两个最大值是同个结点就取一个次大,否则都取最大。

#include <algorithm>
#include <cstdio>
using namespace std; typedef long long ll; const int N = 1e5 + 10; struct Edge {
int v, w, nxt;
} e[N << 1];
int hd[N], p;
void link(int u, int v, int w) {
e[p] = (Edge) {v, w, hd[u]};
hd[u] = p ++;
} int n, dfn[N], idx;
int fa[N], fw[N], c[N], d[N], cnt;
bool cir[N]; void dfs(int u, int cur = -1) {
dfn[u] = ++ idx;
for(int i = hd[u]; ~ i; i = e[i].nxt) if(i != cur) {
int v = e[i].v, w = e[i].w;
if(!dfn[v]) {
fa[v] = u; fw[v] = w; dfs(v, i ^ 1);
} else if(dfn[v] < dfn[u]) {
cnt ++; cir[c[cnt] = u] = 1; d[cnt] = w;
for(int j = u; j != v; j = fa[j]) {
cnt ++; cir[c[cnt] = fa[j]] = 1; d[cnt] = fw[j];
}
}
}
} ll mdep[N][2], tree_d; void dfs2(int u, int f = -1) {
for(int i = hd[u]; ~ i; i = e[i].nxt) {
int v = e[i].v;
if(v == f || cir[v]) continue ;
dfs2(v, u);
ll dis = e[i].w + mdep[v][0];
if(dis > mdep[u][0]) {
mdep[u][1] = mdep[u][0];
mdep[u][0] = dis;
} else if(dis > mdep[u][1]) {
mdep[u][1] = dis;
}
}
tree_d = max(tree_d, mdep[u][0] + mdep[u][1]);
} int main() {
scanf("%d", &n);
fill(hd + 1, hd + n + 1, -1);
for(int u, v, w, i = 1; i <= n; i ++) {
scanf("%d%d%d", &u, &v, &w);
link(u, v, w); link(v, u, w);
}
dfs(1);
static ll dep[N << 1], sum[N << 1], ans = 1ll << 62;
for(int i = 1; i <= cnt; i ++) {
dfs2(c[i]);
dep[i] = dep[i + cnt] = mdep[c[i]][0];
}
for(int i = 1; i <= cnt << 1; i ++)
sum[i] = sum[i - 1] + d[i > cnt ? i - cnt : i]; static int q1[N << 1], l1, r1;
static int q2[N << 1], l2, r2;
#define val1(u) dep[u] - sum[u]
#define val2(u) dep[u] + sum[u]
for(int i = 1; i <= cnt << 1; i ++) {
for(; l1 < r1 && q1[l1] + cnt - 1 < i; l1 ++) ;
for(; r1 - l1 > 1 && q1[l1 + 1] + cnt - 1 < i; l1 ++) q1[l1 + 1] = q1[l1];
for(; l2 < r2 && q2[l2] + cnt - 1 < i; l2 ++) ;
for(; r2 - l2 > 1 && q2[l2 + 1] + cnt - 1 < i; l2 ++) q2[l2 + 1] = q2[l2]; for(; r1 - l1 > 2 && val1(q1[r1 - 1]) <= val1(i); r1 --) ;
q1[r1 ++] = i;
if(r1 - l1 <= 3) {
for(int j = r1 - 1; j > l1; j --)
if(val1(q1[j]) > val1(q1[j - 1])) swap(q1[j], q1[j - 1]);
}
for(; r2 - l2 > 2 && val2(q2[r2 - 1]) <= val2(i); r2 --) ;
q2[r2 ++] = i;
if(r2 - l2 <= 3) {
for(int j = r2 - 1; j > l2; j --)
if(val2(q2[j]) > val2(q2[j - 1])) swap(q2[j], q2[j - 1]);
}
if(i >= cnt && r1 - l1 > 1) {
int a1 = q1[l1], a2 = q1[l1 + 1];
int b1 = q2[l2], b2 = q2[l2 + 1];
ll cir_d = 0;
if(a1 == b1) cir_d = max(val1(a1) + val2(b2), val1(a2) + val2(b1));
else cir_d = val1(a1) + val2(b1);
ans = min(ans, max(tree_d, cir_d));
}
}
printf("%lld.%c\n", ans >> 1, ans & 1 ? '5' : '0');
return 0;
}

\(\text{Codeforces 835F}\)是一样的题,数据范围乘\(2\),改一下输出就行.

什么,\(\text{Wrong Answer}\)?

我觉得这是一个错误的解法,回头有时间更新一种用前后缀的做法。

如果我几个月都没更 可以在评论里捶我

「BZOJ 3242」「NOI 2013」快餐店「基环树」的更多相关文章

  1. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

  2. Solution -「基环树」做题记录

    写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...

  3. 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店

    http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...

  4. BZOJ - 3242 :快餐店 (基环树DP) 最小化半径

    题意:给定N点N边的无向连通图,现在让你在图中找一点作为餐厅,使得最远点距离这点最近. 思路:为了保留整数,我们求最小直径,最后去除2.  直径来源于两部分: 1,在外向树中: 那么就是树的直接,一棵 ...

  5. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  6. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  7. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  8. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  9. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

随机推荐

  1. MySQL自带的性能压力测试工具mysqlslap详解

    使用语法如下:# mysqlslap [options] 常用参数 [options] 详细说明: --auto-generate-sql, -a 自动生成测试表和数据,表示用mysqlslap工具自 ...

  2. openwrt 按下回车才能显示图标信息

    如题所示,openwrt启动后,手动才能按下系统图标和信息. 如何却掉这个手动选项呢? 修改文件/SISP-L26.7.8-OpenWrt/build_dir/target-arm_uClibc-0. ...

  3. 分析诊断工具之五:Procedure Analyse优化表结构

    一.Procedure Analyse PROCEDURE ANALYSE() ,在优化表结构时可以辅助参考分析语句.通过分析select查询结果对现有的表的每一列给出优化的建议. 利用此语句,MyS ...

  4. python第三十二天-----算法

    算法(Algorithm):一个计算过程,解决问题的方法时间复杂度:用来评估算法运行效率的一个东西ps:在日常使用中,请使用sort(),because no zuo no die! 1.冒泡排序:指 ...

  5. Oracle data guard学习

    Oracle data guard学习:三思笔记 Data guard 1data guard结构: data guard是一个集合,由一个primary数据库(生产数据库)和一个或多个standby ...

  6. SQL 2008提供几种数据同步方式

    SQL 2008提供几种数据同步的方式如下. 1.日志传送(Log Shipping),定时将主数据库的日志备份,恢复到目标数据库. 2.数据库镜像(Database Mirror),原理同日志传送, ...

  7. 如何使32位Linux支持4G以上内存

    问题 Linux无法支持超过4G的内存,笔者使用的Linux是CentOS 5,机器是DELL PE1950服务器.    原因: X86系统默认寻址能力的限制    解决办法: 安装具有PAE(物理 ...

  8. Python的安装以及路径的设置(python的下载地址:www.python.org)

    在有的Python版本中在安装时,我们的可以再安装时选择Python路径的自动配备 在选择python的安装程序的时候,我们尽量选择python的2.版本,因为随着Python的更新,Python的数 ...

  9. Strophe.Status的所有值

    ERROR: 0 CONNECTING: 1 CONNFAIL: 2 AUTHENTICATING: 3 AUTHFAIL: 4 CONNECTED: 5 DISCONNECTED: 6 DISCON ...

  10. cookie禁用后的session

    在浏览器地址后加:jsessionid="对应的32位字符串",照样可以访问. 在用户角度来说,浏览器开启,关闭就是一次会话. 在服务器角度来说,session失效才代表一次会话的 ...