「BZOJ 3242」「NOI 2013」快餐店「基环树」
题意
基环树上找到一个点(可以在边上)使得它到树上最远点的距离最小,输出最小距离
题解
如果是一棵树,答案就是树的直径\(/2\)
如果是基环树,那么很好证明删去环上的某一条边是不影响答案的。于是断环为链,单调队列维护\(dep+sum,dep-sum\)的最大值和次大值,然后算直径,如果两个最大值是同个结点就取一个次大,否则都取最大。
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
struct Edge {
int v, w, nxt;
} e[N << 1];
int hd[N], p;
void link(int u, int v, int w) {
e[p] = (Edge) {v, w, hd[u]};
hd[u] = p ++;
}
int n, dfn[N], idx;
int fa[N], fw[N], c[N], d[N], cnt;
bool cir[N];
void dfs(int u, int cur = -1) {
dfn[u] = ++ idx;
for(int i = hd[u]; ~ i; i = e[i].nxt) if(i != cur) {
int v = e[i].v, w = e[i].w;
if(!dfn[v]) {
fa[v] = u; fw[v] = w; dfs(v, i ^ 1);
} else if(dfn[v] < dfn[u]) {
cnt ++; cir[c[cnt] = u] = 1; d[cnt] = w;
for(int j = u; j != v; j = fa[j]) {
cnt ++; cir[c[cnt] = fa[j]] = 1; d[cnt] = fw[j];
}
}
}
}
ll mdep[N][2], tree_d;
void dfs2(int u, int f = -1) {
for(int i = hd[u]; ~ i; i = e[i].nxt) {
int v = e[i].v;
if(v == f || cir[v]) continue ;
dfs2(v, u);
ll dis = e[i].w + mdep[v][0];
if(dis > mdep[u][0]) {
mdep[u][1] = mdep[u][0];
mdep[u][0] = dis;
} else if(dis > mdep[u][1]) {
mdep[u][1] = dis;
}
}
tree_d = max(tree_d, mdep[u][0] + mdep[u][1]);
}
int main() {
scanf("%d", &n);
fill(hd + 1, hd + n + 1, -1);
for(int u, v, w, i = 1; i <= n; i ++) {
scanf("%d%d%d", &u, &v, &w);
link(u, v, w); link(v, u, w);
}
dfs(1);
static ll dep[N << 1], sum[N << 1], ans = 1ll << 62;
for(int i = 1; i <= cnt; i ++) {
dfs2(c[i]);
dep[i] = dep[i + cnt] = mdep[c[i]][0];
}
for(int i = 1; i <= cnt << 1; i ++)
sum[i] = sum[i - 1] + d[i > cnt ? i - cnt : i];
static int q1[N << 1], l1, r1;
static int q2[N << 1], l2, r2;
#define val1(u) dep[u] - sum[u]
#define val2(u) dep[u] + sum[u]
for(int i = 1; i <= cnt << 1; i ++) {
for(; l1 < r1 && q1[l1] + cnt - 1 < i; l1 ++) ;
for(; r1 - l1 > 1 && q1[l1 + 1] + cnt - 1 < i; l1 ++) q1[l1 + 1] = q1[l1];
for(; l2 < r2 && q2[l2] + cnt - 1 < i; l2 ++) ;
for(; r2 - l2 > 1 && q2[l2 + 1] + cnt - 1 < i; l2 ++) q2[l2 + 1] = q2[l2];
for(; r1 - l1 > 2 && val1(q1[r1 - 1]) <= val1(i); r1 --) ;
q1[r1 ++] = i;
if(r1 - l1 <= 3) {
for(int j = r1 - 1; j > l1; j --)
if(val1(q1[j]) > val1(q1[j - 1])) swap(q1[j], q1[j - 1]);
}
for(; r2 - l2 > 2 && val2(q2[r2 - 1]) <= val2(i); r2 --) ;
q2[r2 ++] = i;
if(r2 - l2 <= 3) {
for(int j = r2 - 1; j > l2; j --)
if(val2(q2[j]) > val2(q2[j - 1])) swap(q2[j], q2[j - 1]);
}
if(i >= cnt && r1 - l1 > 1) {
int a1 = q1[l1], a2 = q1[l1 + 1];
int b1 = q2[l2], b2 = q2[l2 + 1];
ll cir_d = 0;
if(a1 == b1) cir_d = max(val1(a1) + val2(b2), val1(a2) + val2(b1));
else cir_d = val1(a1) + val2(b1);
ans = min(ans, max(tree_d, cir_d));
}
}
printf("%lld.%c\n", ans >> 1, ans & 1 ? '5' : '0');
return 0;
}
\(\text{Codeforces 835F}\)是一样的题,数据范围乘\(2\),改一下输出就行.
什么,\(\text{Wrong Answer}\)?
我觉得这是一个错误的解法,回头有时间更新一种用前后缀的做法。
如果我几个月都没更 可以在评论里捶我
「BZOJ 3242」「NOI 2013」快餐店「基环树」的更多相关文章
- 「BZOJ 1791」「IOI 2008」Island「基环树」
题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...
- Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...
- 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店
http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...
- BZOJ - 3242 :快餐店 (基环树DP) 最小化半径
题意:给定N点N边的无向连通图,现在让你在图中找一点作为餐厅,使得最远点距离这点最近. 思路:为了保留整数,我们求最小直径,最后去除2. 直径来源于两部分: 1,在外向树中: 那么就是树的直接,一棵 ...
- bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】
参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
随机推荐
- vijos1369:难解的问题
描述 在你的帮助下,蔚蓝来到了埃及.在金字塔里,蔚蓝看到了一个问题,传说,能回答出这个问题的人就能受到埃及法老的祝福,可是蔚蓝日夜奋战,还是想不出来,你能帮帮他么?(XXX: 胡扯,教主怎么可能想不出 ...
- (转)list_orderby
本文转载自:http://blog.csdn.net/liyifei21/article/details/6558098 一个条件排序情况 list.OrderBy(item => tem.St ...
- AngularJS:依赖注入
ylbtech-AngularJS:依赖注入 1.返回顶部 1. AngularJS 依赖注入 什么是依赖注入 wiki 上的解释是:依赖注入(Dependency Injection,简称DI)是一 ...
- Python命令模块argparse学习笔记(一)
首先是关于-h/--help参数的设置 description:位于help信息前,可用于描述helpprog:描述help信息中程序的名称epilog:位于help信息后usage:描述程序的用途a ...
- redux使用教程详细介绍
本文介绍redux的使用 安装 cnpm install redux --save cnpm install react-redux --save cnpm install redux-devtool ...
- SUSE eth0 No such device
删除 etc/udev/rules.d/70-persistent-net.rules 文件 之后重启让系统重新生成eth0配置文件 rm -f etc/udev/rules.d/70-persis ...
- import javax.servlet 出错(真的很管用)
Error: The import javax.servlet cannot be resolved The import javax.servlet.http.HttpServletRequest ...
- 信号量sem 的用法
#include <semaphore.h> sem_t sem; sem_init(&sem, 0, 0); sem_post(&sem); sem_wait(& ...
- hadoop再次集群搭建(1)-安装系统
从8月份到现在12月份,中间有四个月的时间没有学习hadoop系统了.其实适应新的环境,到现在一切尘埃落定,就应该静下心来,好好学习一下hadoop以及我之前很想学习的mahout.个人对算法比较感兴 ...
- dubbo+zookeeper+dubboadmin环境搭建
4.环境搭建 4.1.zookeeper注册中心的配置安装(在windows平台下,Linux类似,见官方文档)(Redis注册中心安装,简易注册中心安装,简易监控中心安装,见官方文档) 下载zook ...