Redis作为缓存使用时,一些场景下要考虑内存的空间消耗问题。Redis会删除过期键以释放空间,过期键的删除策略有两种:

  • 惰性删除:每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键。
  • 定期删除:每隔一段时间,程序就对数据库进行一次检查,删除里面的过期键。

另外,Redis也可以开启LRU功能来自动淘汰一些键值对。

LRU算法

当需要从缓存中淘汰数据时,我们希望能淘汰那些将来不可能再被使用的数据,保留那些将来还会频繁访问的数据,但最大的问题是缓存并不能预言未来。一个解决方法就是通过LRU进行预测:最近被频繁访问的数据将来被访问的可能性也越大。缓存中的数据一般会有这样的访问分布:一部分数据拥有绝大部分的访问量。当访问模式很少改变时,可以记录每个数据的最后一次访问时间,拥有最少空闲时间的数据可以被认为将来最有可能被访问到。

举例如下的访问模式,A每5s访问一次,B每2s访问一次,C与D每10s访问一次,|代表计算空闲时间的截止点:

~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|

可以看到,LRU对于A、B、C工作的很好,完美预测了将来被访问到的概率B>A>C,但对于D却预测了最少的空闲时间。

但是,总体来说,LRU算法已经是一个性能足够好的算法了

LRU配置参数

Redis配置中和LRU有关的有三个:

  • maxmemory: 配置Redis存储数据时指定限制的内存大小,比如100m。当缓存消耗的内存超过这个数值时, 将触发数据淘汰。该数据配置为0时,表示缓存的数据量没有限制, 即LRU功能不生效。64位的系统默认值为0,32位的系统默认内存限制为3GB
  • maxmemory_policy: 触发数据淘汰后的淘汰策略
  • maxmemory_samples: 随机采样的精度,也就是随即取出key的数目。该数值配置越大, 越接近于真实的LRU算法,但是数值越大,相应消耗也变高,对性能有一定影响,样本值默认为5。

淘汰策略

淘汰策略即maxmemory_policy的赋值有以下几种:

  • noeviction:如果缓存数据超过了maxmemory限定值,并且客户端正在执行的命令(大部分的写入指令,但DEL和几个指令例外)会导致内存分配,则向客户端返回错误响应
  • allkeys-lru: 对所有的键都采取LRU淘汰
  • volatile-lru: 仅对设置了过期时间的键采取LRU淘汰
  • allkeys-random: 随机回收所有的键
  • volatile-random: 随机回收设置过期时间的键
  • volatile-ttl: 仅淘汰设置了过期时间的键---淘汰生存时间TTL(Time To Live)更小的键

volatile-lru, volatile-randomvolatile-ttl这三个淘汰策略使用的不是全量数据,有可能无法淘汰出足够的内存空间。在没有过期键或者没有设置超时属性的键的情况下,这三种策略和noeviction差不多。

一般的经验规则:

  • 使用allkeys-lru策略:当预期请求符合一个幂次分布(二八法则等),比如一部分的子集元素比其它其它元素被访问的更多时,可以选择这个策略。
  • 使用allkeys-random:循环连续的访问所有的键时,或者预期请求分布平均(所有元素被访问的概率都差不多)
  • 使用volatile-ttl:要采取这个策略,缓存对象的TTL值最好有差异

volatile-lruvolatile-random策略,当你想要使用单一的Redis实例来同时实现缓存淘汰和持久化一些经常使用的键集合时很有用。未设置过期时间的键进行持久化保存,设置了过期时间的键参与缓存淘汰。不过一般运行两个实例是解决这个问题的更好方法。

为键设置过期时间也是需要消耗内存的,所以使用allkeys-lru这种策略更加节省空间,因为这种策略下可以不为键设置过期时间。

近似LRU算法

我们知道,LRU算法需要一个双向链表来记录数据的最近被访问顺序,但是出于节省内存的考虑,RedisLRU算法并非完整的实现。Redis并不会选择最久未被访问的键进行回收,相反它会尝试运行一个近似LRU的算法,通过对少量键进行取样,然后回收其中的最久未被访问的键。通过调整每次回收时的采样数量maxmemory-samples,可以实现调整算法的精度。

根据Redis作者的说法,每个Redis Object可以挤出24 bits的空间,但24 bits是不够存储两个指针的,而存储一个低位时间戳是足够的,Redis Object以秒为单位存储了对象新建或者更新时的unix time,也就是LRU clock,24 bits数据要溢出的话需要194天,而缓存的数据更新非常频繁,已经足够了。

Redis的键空间是放在一个哈希表中的,要从所有的键中选出一个最久未被访问的键,需要另外一个数据结构存储这些源信息,这显然不划算。最初,Redis只是随机的选3个key,然后从中淘汰,后来算法改进到了N个key的策略,默认是5个。

Redis3.0之后又改善了算法的性能,会提供一个待淘汰候选key的pool,里面默认有16个key,按照空闲时间排好序。更新时从Redis键空间随机选择N个key,分别计算它们的空闲时间idle,key只会在pool不满或者空闲时间大于pool里最小的时,才会进入pool,然后从pool中选择空闲时间最大的key淘汰掉。

真实LRU算法与近似LRU的算法可以通过下面的图像对比:

浅灰色带是已经被淘汰的对象,灰色带是没有被淘汰的对象,绿色带是新添加的对象。可以看出,maxmemory-samples值为5时Redis 3.0效果比Redis 2.8要好。使用10个采样大小的Redis 3.0的近似LRU算法已经非常接近理论的性能了。

数据访问模式非常接近幂次分布时,也就是大部分的访问集中于部分键时,LRU近似算法会处理得很好。

在模拟实验的过程中,我们发现如果使用幂次分布的访问模式,真实LRU算法和近似LRU算法几乎没有差别。

LRU源码分析

Redis中的键与值都是redisObject对象:

typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;
void *ptr;
} robj;

unsigned的低24 bits的lru记录了redisObj的LRU time。

Redis命令访问缓存的数据时,均会调用函数lookupKey:

robj *lookupKey(redisDb *db, robj *key, int flags) {
dictEntry *de = dictFind(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm.
* Don't do it if we have a saving child, as this will trigger
* a copy on write madness. */
if (server.rdb_child_pid == -1 &&
server.aof_child_pid == -1 &&
!(flags & LOOKUP_NOTOUCH))
{
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
updateLFU(val);
} else {
val->lru = LRU_CLOCK();
}
}
return val;
} else {
return NULL;
}
}

该函数在策略为LRU(非LFU)时会更新对象的lru值, 设置为LRU_CLOCK()值:

/* Return the LRU clock, based on the clock resolution. This is a time
* in a reduced-bits format that can be used to set and check the
* object->lru field of redisObject structures. */
unsigned int getLRUClock(void) {
return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
} /* This function is used to obtain the current LRU clock.
* If the current resolution is lower than the frequency we refresh the
* LRU clock (as it should be in production servers) we return the
* precomputed value, otherwise we need to resort to a system call. */
unsigned int LRU_CLOCK(void) {
unsigned int lruclock;
if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {
atomicGet(server.lruclock,lruclock);
} else {
lruclock = getLRUClock();
}
return lruclock;
}

LRU_CLOCK()取决于LRU_CLOCK_RESOLUTION(默认值1000)LRU_CLOCK_RESOLUTION代表了LRU算法的精度,即一个LRU的单位是多长。server.hz代表服务器刷新的频率,如果服务器的时间更新精度值比LRU的精度值要小,LRU_CLOCK()直接使用服务器的时间,减小开销。

Redis处理命令的入口是processCommand:

int processCommand(client *c) {

    /* Handle the maxmemory directive.
*
* Note that we do not want to reclaim memory if we are here re-entering
* the event loop since there is a busy Lua script running in timeout
* condition, to avoid mixing the propagation of scripts with the
* propagation of DELs due to eviction. */
if (server.maxmemory && !server.lua_timedout) {
int out_of_memory = freeMemoryIfNeededAndSafe() == C_ERR;
/* freeMemoryIfNeeded may flush slave output buffers. This may result
* into a slave, that may be the active client, to be freed. */
if (server.current_client == NULL) return C_ERR; /* It was impossible to free enough memory, and the command the client
* is trying to execute is denied during OOM conditions or the client
* is in MULTI/EXEC context? Error. */
if (out_of_memory &&
(c->cmd->flags & CMD_DENYOOM ||
(c->flags & CLIENT_MULTI && c->cmd->proc != execCommand))) {
flagTransaction(c);
addReply(c, shared.oomerr);
return C_OK;
}
}
}

只列出了释放内存空间的部分,freeMemoryIfNeededAndSafe为释放内存的函数:

int freeMemoryIfNeeded(void) {
/* By default replicas should ignore maxmemory
* and just be masters exact copies. */
if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK; size_t mem_reported, mem_tofree, mem_freed;
mstime_t latency, eviction_latency;
long long delta;
int slaves = listLength(server.slaves); /* When clients are paused the dataset should be static not just from the
* POV of clients not being able to write, but also from the POV of
* expires and evictions of keys not being performed. */
if (clientsArePaused()) return C_OK;
if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
return C_OK; mem_freed = 0; if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
goto cant_free; /* We need to free memory, but policy forbids. */ latencyStartMonitor(latency);
while (mem_freed < mem_tofree) {
int j, k, i, keys_freed = 0;
static unsigned int next_db = 0;
sds bestkey = NULL;
int bestdbid;
redisDb *db;
dict *dict;
dictEntry *de; if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
{
struct evictionPoolEntry *pool = EvictionPoolLRU; while(bestkey == NULL) {
unsigned long total_keys = 0, keys; /* We don't want to make local-db choices when expiring keys,
* so to start populate the eviction pool sampling keys from
* every DB. */
for (i = 0; i < server.dbnum; i++) {
db = server.db+i;
dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
db->dict : db->expires;
if ((keys = dictSize(dict)) != 0) {
evictionPoolPopulate(i, dict, db->dict, pool);
total_keys += keys;
}
}
if (!total_keys) break; /* No keys to evict. */ /* Go backward from best to worst element to evict. */
for (k = EVPOOL_SIZE-1; k >= 0; k--) {
if (pool[k].key == NULL) continue;
bestdbid = pool[k].dbid; if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
de = dictFind(server.db[pool[k].dbid].dict,
pool[k].key);
} else {
de = dictFind(server.db[pool[k].dbid].expires,
pool[k].key);
} /* Remove the entry from the pool. */
if (pool[k].key != pool[k].cached)
sdsfree(pool[k].key);
pool[k].key = NULL;
pool[k].idle = 0; /* If the key exists, is our pick. Otherwise it is
* a ghost and we need to try the next element. */
if (de) {
bestkey = dictGetKey(de);
break;
} else {
/* Ghost... Iterate again. */
}
}
}
} /* volatile-random and allkeys-random policy */
else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
{
/* When evicting a random key, we try to evict a key for
* each DB, so we use the static 'next_db' variable to
* incrementally visit all DBs. */
for (i = 0; i < server.dbnum; i++) {
j = (++next_db) % server.dbnum;
db = server.db+j;
dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
db->dict : db->expires;
if (dictSize(dict) != 0) {
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
bestdbid = j;
break;
}
}
} /* Finally remove the selected key. */
if (bestkey) {
db = server.db+bestdbid;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
/* We compute the amount of memory freed by db*Delete() alone.
* It is possible that actually the memory needed to propagate
* the DEL in AOF and replication link is greater than the one
* we are freeing removing the key, but we can't account for
* that otherwise we would never exit the loop.
*
* AOF and Output buffer memory will be freed eventually so
* we only care about memory used by the key space. */
delta = (long long) zmalloc_used_memory();
latencyStartMonitor(eviction_latency);
if (server.lazyfree_lazy_eviction)
dbAsyncDelete(db,keyobj);
else
dbSyncDelete(db,keyobj);
latencyEndMonitor(eviction_latency);
latencyAddSampleIfNeeded("eviction-del",eviction_latency);
latencyRemoveNestedEvent(latency,eviction_latency);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++; /* When the memory to free starts to be big enough, we may
* start spending so much time here that is impossible to
* deliver data to the slaves fast enough, so we force the
* transmission here inside the loop. */
if (slaves) flushSlavesOutputBuffers(); /* Normally our stop condition is the ability to release
* a fixed, pre-computed amount of memory. However when we
* are deleting objects in another thread, it's better to
* check, from time to time, if we already reached our target
* memory, since the "mem_freed" amount is computed only
* across the dbAsyncDelete() call, while the thread can
* release the memory all the time. */
if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
/* Let's satisfy our stop condition. */
mem_freed = mem_tofree;
}
}
} if (!keys_freed) {
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
goto cant_free; /* nothing to free... */
}
}
latencyEndMonitor(latency);
latencyAddSampleIfNeeded("eviction-cycle",latency);
return C_OK; cant_free:
/* We are here if we are not able to reclaim memory. There is only one
* last thing we can try: check if the lazyfree thread has jobs in queue
* and wait... */
while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
break;
usleep(1000);
}
return C_ERR;
} /* This is a wrapper for freeMemoryIfNeeded() that only really calls the
* function if right now there are the conditions to do so safely:
*
* - There must be no script in timeout condition.
* - Nor we are loading data right now.
*
*/
int freeMemoryIfNeededAndSafe(void) {
if (server.lua_timedout || server.loading) return C_OK;
return freeMemoryIfNeeded();
}

几种淘汰策略maxmemory_policy就是在这个函数里面实现的。

当采用LRU时,可以看到,从0号数据库开始(默认16个),根据不同的策略,选择redisDbdict(全部键)或者expires(有过期时间的键),用来更新候选键池子poolpool更新策略是evictionPoolPopulate:

void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
int j, k, count;
dictEntry *samples[server.maxmemory_samples]; count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
for (j = 0; j < count; j++) {
unsigned long long idle;
sds key;
robj *o;
dictEntry *de; de = samples[j];
key = dictGetKey(de); /* If the dictionary we are sampling from is not the main
* dictionary (but the expires one) we need to lookup the key
* again in the key dictionary to obtain the value object. */
if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
if (sampledict != keydict) de = dictFind(keydict, key);
o = dictGetVal(de);
} /* Calculate the idle time according to the policy. This is called
* idle just because the code initially handled LRU, but is in fact
* just a score where an higher score means better candidate. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
idle = estimateObjectIdleTime(o);
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
/* When we use an LRU policy, we sort the keys by idle time
* so that we expire keys starting from greater idle time.
* However when the policy is an LFU one, we have a frequency
* estimation, and we want to evict keys with lower frequency
* first. So inside the pool we put objects using the inverted
* frequency subtracting the actual frequency to the maximum
* frequency of 255. */
idle = 255-LFUDecrAndReturn(o);
} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
/* In this case the sooner the expire the better. */
idle = ULLONG_MAX - (long)dictGetVal(de);
} else {
serverPanic("Unknown eviction policy in evictionPoolPopulate()");
} /* Insert the element inside the pool.
* First, find the first empty bucket or the first populated
* bucket that has an idle time smaller than our idle time. */
k = 0;
while (k < EVPOOL_SIZE &&
pool[k].key &&
pool[k].idle < idle) k++;
if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
/* Can't insert if the element is < the worst element we have
* and there are no empty buckets. */
continue;
} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
/* Inserting into empty position. No setup needed before insert. */
} else {
/* Inserting in the middle. Now k points to the first element
* greater than the element to insert. */
if (pool[EVPOOL_SIZE-1].key == NULL) {
/* Free space on the right? Insert at k shifting
* all the elements from k to end to the right. */ /* Save SDS before overwriting. */
sds cached = pool[EVPOOL_SIZE-1].cached;
memmove(pool+k+1,pool+k,
sizeof(pool[0])*(EVPOOL_SIZE-k-1));
pool[k].cached = cached;
} else {
/* No free space on right? Insert at k-1 */
k--;
/* Shift all elements on the left of k (included) to the
* left, so we discard the element with smaller idle time. */
sds cached = pool[0].cached; /* Save SDS before overwriting. */
if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
memmove(pool,pool+1,sizeof(pool[0])*k);
pool[k].cached = cached;
}
} /* Try to reuse the cached SDS string allocated in the pool entry,
* because allocating and deallocating this object is costly
* (according to the profiler, not my fantasy. Remember:
* premature optimizbla bla bla bla. */
int klen = sdslen(key);
if (klen > EVPOOL_CACHED_SDS_SIZE) {
pool[k].key = sdsdup(key);
} else {
memcpy(pool[k].cached,key,klen+1);
sdssetlen(pool[k].cached,klen);
pool[k].key = pool[k].cached;
}
pool[k].idle = idle;
pool[k].dbid = dbid;
}
}

Redis随机选择maxmemory_samples数量的key,然后计算这些key的空闲时间idle time,当满足条件时(比pool中的某些键的空闲时间还大)就可以进pool。pool更新之后,就淘汰pool中空闲时间最大的键。

estimateObjectIdleTime用来计算Redis对象的空闲时间:

/* Given an object returns the min number of milliseconds the object was never
* requested, using an approximated LRU algorithm. */
unsigned long long estimateObjectIdleTime(robj *o) {
unsigned long long lruclock = LRU_CLOCK();
if (lruclock >= o->lru) {
return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION;
} else {
return (lruclock + (LRU_CLOCK_MAX - o->lru)) *
LRU_CLOCK_RESOLUTION;
}
}

空闲时间基本就是就是对象的lru和全局的LRU_CLOCK()的差值乘以精度LRU_CLOCK_RESOLUTION,将秒转化为了毫秒。

参考链接

Redis中的LRU淘汰策略分析的更多相关文章

  1. 动手实现 LRU 算法,以及 Caffeine 和 Redis 中的缓存淘汰策略

    我是风筝,公众号「古时的风筝」. 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面. 那天我在 LeetCode 上刷到一道 LRU 缓存机制的问题, ...

  2. Redis 中的过期删除策略和内存淘汰机制

    Redis 中 key 的过期删除策略 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 ...

  3. Redis数据过期和淘汰策略详解(转)

    原文地址:https://yq.aliyun.com/articles/257459# 背景 Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制. 用户在使用Redis时,除 ...

  4. Redis(二十):Redis数据过期和淘汰策略详解(转)

    原文地址:https://yq.aliyun.com/articles/257459# 背景 Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制. 用户在使用Redis时,除 ...

  5. Redis系列之-—内存淘汰策略(笔记)

    一.Redis ---获取设置的Redis能使用的最大内存大小 []> config get maxmemory ) "maxmemory" ) " --获取当前内 ...

  6. Redis++:Redis 内存爆满 之 淘汰策略

    前言: 我们的redis使用的是内存空间来存储数据的,但是内存空间毕竟有限,随着我们存储数据的不断增长,当超过了我们的内存大小时,即在redis中设置的缓存大小(maxmeory 4GB),redis ...

  7. Redis 中的数据持久化策略(RDB)

    Redis 是一个内存数据库,所有的数据都直接保存在内存中,那么,一旦 Redis 进程异常退出,或服务器本身异常宕机,我们存储在 Redis 中的数据就凭空消失,再也找不到了. Redis 作为一个 ...

  8. Redis 中的数据持久化策略(AOF)

    上一篇文章,我们讲的是 Redis 的一种基于内存快照的持久化存储策略 RDB,本质上他就是让 redis fork 出一个子进程遍历我们所有数据库中的字典,进行磁盘文件的写入. 但其实这种方式是有缺 ...

  9. InnoDB的LRU淘汰策略

    Reference: https://time.geekbang.org/column/article/121710 InnoDB存储引擎是基于集合索引实现的数据存储,也就是除了索引列以及主键是存储在 ...

随机推荐

  1. 【转】Pro Android学习笔记(十七):用户界面和控制(5):日期和时间控件

    目录(?)[-] DatePicker和TimePicker控件 DigitalClock和AnalogClock控件 DatePicker和TimePicker控件 使用DatePicker和Tim ...

  2. cocos2d-x 屏幕分辨率适配方法

    转自:http://blog.csdn.net/somestill/article/details/9950403 bool AppDelegate::applicationDidFinishLaun ...

  3. 通信端口Com口被占用的原因分析

    目前在调试地磅读取程序,近一段时间无法读取,排查原因发现是com1端口被占用. 从网上找了无数个文章,最终得到一条有价值的消息, 原因如下: com1端口不能读取电子地磅的数据了,重启之后发现 有一个 ...

  4. 问题:Oracle long 类型l;结果:oracle里long类型的总结

    oracle里long类型的总结 1.LONG 数据类型中存储的是可变长字符串,最大长度限制是2GB. 2.对于超出一定长度的文本,基本只能用LONG类型来存储,数据字典中很多对象的定义就是用LONG ...

  5. SQL中top使用方法

    转自:https://www.cnblogs.com/wang7/archive/2012/07/09/2582891.html 1. 在编写程序中,我们可能遇到诸如查询最热门的5篇文章或返回满足条件 ...

  6. 利用Ssocks访问国外网站(yutube/google等)

    ***开源项目:https://github.com/***/ 本例使用的是针对windows系统的c-sharp版本:https://github.com/***/***-windows 运行*** ...

  7. [poj1459]Power Network(多源多汇最大流)

    题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...

  8. Springboot ResponseEntity IE无法正常下载文件

    项目在google浏览器下都很nice了,但当测试到IE的时候开始出现各种问题. 项目是前端js通过URL传参fileName到后台解析返回ResponseEntity 前端代码如下: window. ...

  9. 树莓派 Learning 002 装机后的必要操作 --- 06 共用键鼠 之 windows和树莓派

    树莓派 装机后的必要操作 - 使用Synergy软件 共用键鼠 之 windows和树莓派 我的树莓派型号:Raspberry Pi 2 Model B V1.1 装机系统:NOOBS v1.9.2 ...

  10. Pig Flatten 解包操作,解元组

    Flatten Operator The FLATTEN operator looks like a UDF syntactically, but it is actually an operator ...