HDU 5245 Joyful(概率题求期望)
Description
However, Sakura is a very naughty girl, so she just randomly uses the tool for $K$ times. More specifically, each time for Sakura to use that tool, she just randomly picks two squares from all the $M \times N$ squares, with equal probability. Now, kAc wants to know the expected number of squares that will be painted eventually.
Input
For each test case, there is only one line, with three integers $M, N$ and $K$.
It is guaranteed that $1 \le M, N \le 500$, $1 \le K \le 20$.
Output
Sample Input
3 3 1
4 4 2
Sample Output
Case #2: 8
Hint The precise answer in the first test case is about 3.56790123.
题意:有t组数据,每组输入m,n,k。表示有一个m*n的矩阵,在矩阵中随机取两个点(x1,y1),(x2,y2),以这两个点为矩形的两个顶点,画一个矩形,即矩形的四个顶点为(x1,y1),(x1,y2),(x2,y1),(x2,y2)。矩形中的所有点视为被染色,进行k次这样的操作,问该矩阵中被染色的格子的个数的期望。这两个点互不影响,也就是这两个点可以相同。每个点可以被多次染色,就是被染两次就算两次,不是算一次。
题解:因为(x1,y1),(x2,y2)这两个点是从矩阵中取的,第一个点有n*m种可能性,第二个点也有n*m种可能性,所以总的情况数为n*n*m*m。我们对矩阵中的每个点进行单独讨论,假设有这么一个点x,y。我们知道,x表示该点在第x行,y表示该点在第y列,那么如果取的那两个点(x1,y1),(x2,y2)都在1到x-1行或者都在x+1到m行之间或者都在1到y-1列之间或者都在y+1到n列之间,则(x,y)这个点不会被染色,将上面的四种情况可以看做是上下左右四种情况。根据容斥原理,我们要减去左上,左下,右上,右下这四种情况,这是因为上和左同时覆盖左上,以此类推。用该情况数除以总情况数所得概率p就是该点不被染色的概率,进行k次该操作,则tmp=p^k就是该点k次操作之后不被染色的概率,1-tmp就是该点被染色的概率,因为该点是一个点,所以概率就是期望,将每个点的期望加起来,就是结果了,注意四舍五入用%.0f就能实现,具体的有很多很多需要注意的细节问题请看代码注释。
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
ll c(ll a,ll b)
{
return a*a*b*b;
}
int main()
{
/*1.用G++提交 C++慢 有可能都超时
2.用scanf写 cin慢 虽然在本题中一样
3.tmp用循环跑 pow慢*/
int t,cas=;
scanf("%d",&t);
while(t--)
{
ll n,m,k;//这里nm顺序无所谓
//注意这里一定要用long long,要不然计算的时候还得强制转化一下
scanf("%lld%lld%lld",&n,&m,&k);
ll ans,sum=n*n*m*m;
//ans除以sum求不被染色概率
//两个格子每个都有n*m种选择
double p,qiwang=;
//p表示该格子一次操作后不被染色的概率
//qiwang表示该格子被染色的概率也就是期望,因为是相对于一个格子而言的 乘数为1
for(int i=;i<=n;i++)//对每个格子进行讨论
for(int j=;j<=m;j++)
{
ans=;//初始化
//容斥原理
ans+=c(i-,m);
ans+=c(n-i,m);
ans+=c(n,j-);
ans+=c(n,m-j);
ans-=c(i-,j-);
ans-=c(i-,m-j);
ans-=c(n-i,j-);
ans-=c(n-i,m-j);
p=1.0*ans/sum;//该格子不被染色的概率
double tmp=;//初始化
//该格子k次操作后不被染色的概率
for(int i=;i<k;i++)//pow返回double 不要用pow
tmp*=p;
//该格子被染色的概率也就是期望
qiwang+=-tmp;
}
// %0.f自动取整了 或者floor+0.5或者round函数也可以
printf("Case #%d: %.0lf\n",cas++,qiwang);
}
return ;
}
这个题之前把题目里的题号写错了,写成5345了。(流汗)
HDU 5245 Joyful(概率题求期望)的更多相关文章
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDU3853-LOOPS(概率DP求期望)
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Su ...
- hdu 5245 Joyful(期望的计算,好题)
Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...
- J - Joyful HDU - 5245 (概率)
题目链接: J - Joyful HDU - 5245 题目大意:给你一个n*m的矩阵,然后你有k次涂色机会,然后每一次可以选定当前矩阵的一个子矩阵染色,问你这k次用完之后颜色个数的期望. 具体思路 ...
- HDU 5245 Joyful(期望)
http://acm.hdu.edu.cn/showproblem.php?pid=5245 题意: 给出一个n*m的矩阵格子,现在有k次操作,每次操作随机选择两个格子作为矩形的对角,然后将这范围内的 ...
- POJ2096 Collecting Bugs(概率DP,求期望)
Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...
- LightOJ 1030 【概率DP求期望】
借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...
- HDU 5245 Joyful (期望)
题意:进行K次染色,每次染色会随机选取一个以(x1,y1),(x2,y2)为一组对角的子矩阵进行染色,求K次染色后染色面积的期望值(四舍五入). 析:我们可以先求出每个格子的期望,然后再加起来即可.我 ...
- hdu 4405 Aeroplane chess(简单概率dp 求期望)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
随机推荐
- Python 文本挖掘:使用情感词典进行情感分析(算法及程序设计)
出处:http://www.ithao123.cn/content-242299.html 情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪. 原理 比如 ...
- Android弹出输入提示框--PopupWindow实现
前言 之前直接用Dialog实现了弹出对话框.现在尝试用更好地解决方案--PopupWindow类--来实现 1.首先搞一个弹出框布局,和之前类似. 这样的东西,它的布局是这样: 1 <?xm ...
- 如何使用Idea导入jar包
技术交流群: 233513714 1.在idea底部找到Terminal,然后进入输入框,如下图所示 2.在输入框中输入 mvn install:install-file -D file=C:\Use ...
- react事件处理及动态样式添加
多数据的事件绑定,循环数据来进行绑定.如下方式就是循环绑定事件的基本代码: this.state.lists.map(function(value,index,array){//代码片段}.bind( ...
- linux部署环境配置
https://blog.csdn.net/dsczxcc/article/details/78728330
- 【转载】全面解析Unity3D自动生成的脚本工程文件
我们在Unity3D开发的时候,经常会看到它会产生不少固定命名工程文件,诸如: Assembly-CSharp-vs.csproj Assembly-CSharp-firstpass-vs.csp ...
- 安卓自动化robotium工具简单使用(二)
在学习安卓的这段时间里,刚好有个朋友有一个APP的应用需要开发. 我马上就动手开始做着试试,在完成开发的同时写了相应的自动化测试代码,使用的是robotium. 才接触安卓没几天,写的不太好,如果有好 ...
- HDU 1171 Big Event in HDU 母函数
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Big Event in HDU Time Limit: 10000/5000 MS (Java/Others) Memory ...
- PHP文件信息获取函数
知识点: basename():获取文件名,传入第二个参数则只显示文件名,不显示后缀 dirname():获取文件路径 pathinfo():将文件信息存入一个数组,通过索引basename,dirn ...
- java值转递?引用传递?
值传递是传递的是原值的副本,引用传递传递的是原值. 在Java中,如果是基本数据类型,传递的是该参数字面量值的拷贝.如果是引用数据类型,传递的是该参数所引用对象在堆中地址的拷贝. swap(int a ...