every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes
As we saw above, every row of W is a classifier for one of the classes. The geometric interpretation of these numbers is that as we change one of the rows of W, the corresponding line in the pixel space will rotate in different directions. The biases b, on the other hand, allow our classifiers to translate the lines. In particular, note that without the bias terms, plugging in xi=0xi=0 would always give score of zero regardless of the weights, so all lines would be forced to cross the origin.
Interpretation of linear classifiers as template matching. Another interpretation for the weights W is that each row of W corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each class for an image is then obtained by comparing each template with the image using an inner product (or dot product) one by one to find the one that “fits” best. With this terminology, the linear classifier is doing template matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest Neighbor, but instead of having thousands of training images we are only using a single image per class (although we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the (negative) inner product as the distance instead of the L1 or L2 distance.
http://cs231n.github.io/linear-classify/
every row of W is a classifier for one of the classes的更多相关文章
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- Win10配Theano环境和Keras框架
网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...
- javaScript生成二维码(支持中文,生成logo)
资料搜索 选择star最多的两个 第一个就是用的比较多的jquery.qrcode.js(但不支持中文,不能带logo)啦,第二个支持ie6+,支持中文,根据第二个源代码,使得,jquery.qrco ...
- DB2死锁的解决办法
db2 get snapshot for locks on sampledb2 get db cfg for sampledb2 update db cfg using dlchktime 10000 ...
- oracle数据库常用查询
一.数据库信息 1.数据库时间 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') AS dbtime from dual; 2.主机OS类型 SELEC ...
- Stanford机器学习笔记-5.神经网络Neural Networks (part two)
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propag ...
随机推荐
- 【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?
1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3. ...
- Android Crash 定位
本文介绍了如何在 Android 手机发生 Crash 时进行 Log 分析的方法, 它可以帮助测试人员快速定位 Android 手机 Crash 发生的原因,同时给研发人员提供有效修改 Bug 的 ...
- JAVA Eclipse如何开发Android的多页面程序
Fragment可以认为是Activity的一个界面的组成部分,Fragment必须依存于Activity. 在layout文件夹中新建一个xml文件,布局方式采用RelativeLayout,注 ...
- Linux——学习环境搭建
终于决定将学习环境彻底转到Linux上来,下面记录一下转移学习环境的各种软件和环境的安装和配置. 1.centos自带python2.6,之前的博文已经说到已成功更新到python3.3,下面首先安装 ...
- axios 设置超时时间 timeout
this.$ajax.post('', {operate: type, ids: this.data.id.toString(), data_type: 'ips'}, {timeout: 60000 ...
- 【Java】各种软件安装与环境配置的失败
又来到了java的世界,看了一段时间的视频.感觉太空虚,便从网上找到一个教程.想做几个demo试试,少不了的前期准备:Java开发环境配置,Eclipse JSP/Servlet 环境搭建等. ...
- HDU4647:Another Graph Game(贪心)
Problem Description Alice and Bob are playing a game on an undirected graph with n (n is even) nodes ...
- 哇哦!恍然大悟般的“share”功能的实现!
有一个问题一直困扰着我,也是我一直没有时间去了解和学习的,那就是前端(移动端)实现分享到微信.QQ好友.QQ空间.新浪微博等等平台的功能实现,虽然之前有做过,但是都是上一个领导自己写好的,我直接拿来用 ...
- sessionStorage / localStorage
var referurl = document.referrer; //上级网址 if(referurl.indexOf('address_order')>0){ //判断是否是从上一级地址跳转 ...
- 如何进入到Docker容器内部
启动Docker容器后,对应的服务(例如tomcat启动)也通过dockerfile文件命令运行起来了,这个时候如何进行容器内部观察容器的运行状态. 1.docker attach 这个命令在创建一个 ...