every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes
As we saw above, every row of W is a classifier for one of the classes. The geometric interpretation of these numbers is that as we change one of the rows of W, the corresponding line in the pixel space will rotate in different directions. The biases b, on the other hand, allow our classifiers to translate the lines. In particular, note that without the bias terms, plugging in xi=0xi=0 would always give score of zero regardless of the weights, so all lines would be forced to cross the origin.
Interpretation of linear classifiers as template matching. Another interpretation for the weights W is that each row of W corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each class for an image is then obtained by comparing each template with the image using an inner product (or dot product) one by one to find the one that “fits” best. With this terminology, the linear classifier is doing template matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest Neighbor, but instead of having thousands of training images we are only using a single image per class (although we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the (negative) inner product as the distance instead of the L1 or L2 distance.
http://cs231n.github.io/linear-classify/
every row of W is a classifier for one of the classes的更多相关文章
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- Win10配Theano环境和Keras框架
网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...
- javaScript生成二维码(支持中文,生成logo)
资料搜索 选择star最多的两个 第一个就是用的比较多的jquery.qrcode.js(但不支持中文,不能带logo)啦,第二个支持ie6+,支持中文,根据第二个源代码,使得,jquery.qrco ...
- DB2死锁的解决办法
db2 get snapshot for locks on sampledb2 get db cfg for sampledb2 update db cfg using dlchktime 10000 ...
- oracle数据库常用查询
一.数据库信息 1.数据库时间 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') AS dbtime from dual; 2.主机OS类型 SELEC ...
- Stanford机器学习笔记-5.神经网络Neural Networks (part two)
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propag ...
随机推荐
- mysql常用命令和函数
一.DROP IF EXISTS DROP FUNCTION IF EXISTS fun;DROP TABLE IF EXISTS table; 二.数据表1.建立表CREATE TABLE test ...
- 网络编程 TCP学习
上传txt文本 通过socket向服务端发送数据 然后用serversocket 接收socket 通过流读取数据保存 服务端在发送确认信息并在client输出 client import java. ...
- 定制一个类似地址选择器的view
代码地址如下:http://www.demodashi.com/demo/12832.html 前言: 这几天也是闲来无事,看看有什么和Scroller相关的控件需要巩固下,原因很简单,前几天看到相关 ...
- ios程序,顶部和底部产生空白——程序不能全屏运行
在开发过程中,遇到过这样的问题,整个程序不能以全屏状态运行,顶部和底部出现空白,如下图所示: 这样的原因是:设置的启动页不合适,设置大小合适的启动页就好了
- DelphiXe 中静态数组TByteArray和动态数组TBytes /array of byte 的区别
在应用中发现静态数组和动态数组是有区别的: procedure TForm1.Button1Click(Sender: TObject);var RsltStream: TMemoryStream; ...
- https 加载问题
https的网站,加载的资源要全部https,如果里面有http的资源,很多浏览器是加载不进来 要地址栏变绿,网站内部全部引用都是https的
- 微信公众号开发之创建菜单栏代码示例(php)
思路很简单:就是先获取access_token,然后带着一定规则的json数据参数请求创建菜单的接口.废话不多讲,直接上代码. class Wechat { public $APPID="w ...
- Atitit.常见的4gl 第四代编程语言 与 dsl
Atitit.常见的4gl 第四代编程语言 与 dsl 1. 4gl dsl发展历史1 2. 4gl dsl的特点1 3. 常见的4gl 第四代编程语言 dsl2 4. 未来趋势与标准2 4.1.1 ...
- Nginx服务启动脚本
#!/bin/sh # chkconfig: 2345 40 98 # description: Start/Stop Nginx server path=/application/nginx/sbi ...
- MySQL四-2:完整性约束
阅读目录 一 介绍 二 not null与default 三 unique 四 primary key 五 auto_increment 六 foreign key 七 作业 一 介绍 约束条件与数据 ...