Scout YYF I (概率+矩阵快速幂)
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000 题意:一条长路有 N (1 ≤ N ≤ 10)颗地雷,一个人走一步的概率是 p ,走两步的概率是 (1-p) ,然后给出 N 颗地雷的位置 ,问这个人安全走过所有地雷的概率是多少 题解:对于一个位置x,设能走到的概率是 P(x) ,那么 P(x) = P(x-1)*p + P(x-2)*(1-p) 这个数x可能很大,所以需要矩阵快速幂
然后将整个的路看成由地雷分割的 N 段路
[0 -- x1]
[x1+1 -- x2]
[x2+1 -- x3]
... ...
所以,他能安全过去的概率就是 N 段都能过去的连乘
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define MAXN 12 int n;
double p;
int bomb[MAXN]; double base[][];
double res[][]; //[ p(x) ] = [ p , 1-p ]^(x-1) * [ 1 ]
//[ p(x-1) ] [ 1 , 0 ] [ 0 ]
void quick_mi(int x)
{
double tp[][];
while (x)
{
if (x%==)
{
for (int i=;i<;i++)
for (int j=;j<;j++)
{
tp[i][j]=;
for (int k=;k<;k++)
tp[i][j]+=res[i][k]*base[k][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
res[i][j]=tp[i][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
{
tp[i][j]=;
for (int k=;k<;k++)
tp[i][j]+=base[i][k]*base[k][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
base[i][j]=tp[i][j];
x/=;
}
} double Mi(int x)//处于位置1踩到位置 x 的概率
{
if (x==) return ;
base[][]=p,base[][]=1.0-p;
base[][]=,base[][]=;
res[][]=;res[][]=;
res[][]=;res[][]=;
quick_mi(x-);
return res[][];
} int main()
{
while (scanf("%d%lf",&n,&p)!=EOF)
{
for (int i=;i<n;i++)
scanf("%d",&bomb[i]);
sort(bomb,bomb+n); double xxx=Mi(bomb[]); //死了的概率
double ans = 1.0-xxx; //没死
for (int i=;i<n;i++)
{
xxx =Mi(bomb[i]-bomb[i-]); //化简后
ans *= (1.0-xxx);
}
printf("%.7lf\n",ans);
}
return ;
}
Scout YYF I (概率+矩阵快速幂)的更多相关文章
- POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)
http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...
- POJ3744Scout YYF I(求概率 + 矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6757 Accepted: 1960 Descr ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂
题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...
- poj4474 Scout YYF I(概率dp+矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1051 Descr ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- POJ 3744 【矩阵快速幂优化 概率DP】
搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小 ...
随机推荐
- Attribute 和 Parameter 的区别
Attribute 和 Parameter 的区别 (1)HttpServletRequest类有setAttribute()方法,而没有setParameter()方法 (2)当两个Web组件之间为 ...
- Python-爬虫-针对有frame框架的页面
有的页面会使用frame 框架,使用Selenium + PhantomJS 后并不会加载iframe 框架中的网页内容.iframe 框架相当于在页面中又加载了一个页面,需要使用Selenium 的 ...
- vs2010 编译多个project问题
使用VS2010 编译从vc6.0复制过来的原project文件源代码.提示错误非常多.感觉无从下手.非常多原始的函数和API參数都提示类型 错误或者不兼容. 百度一下.第一个问题: vc6.0使用A ...
- OS之os.fork()
有两种方式来实现并发性, 一种方式是让每个“任务"或“进程”在单独的内在空间中工作,每个都有自已的工作内存区域.不过,虽然进程可在单独的内存空间中执行,但除非这些进程在单独的处理器上执行,否 ...
- react 打包后,项目部署完毕,刷新页面报错(404)
原因解析: 之所以你在浏览器内可以由首页跳转到其他路由地址,是因为这是由前端自行渲染的,你在React Router定义了对应的路由,脚本并没有刷新网页访问后台,是JS动态更改了location. 当 ...
- 解决cp: omitting directory 提示信息
解决cp: omitting directory 提示信息 执行cp时出现“cp: omitting directory ” 提示信息, 可以使用cp -r 参数来递归拷贝这些文件.
- Python Windows文件操作
获得目录和文件名 os.getenv()获取环境变量 os.putenv()设置环境变量 os.getcwd() 获得当前目录 os.chdir(‘要设置的当前目录’) os.listdir() 返回 ...
- 【ExtAspNet学习笔记】ExtAspNet控件库中常见问题
1.在Grid控件中添加CheckBoxField控件,选择一行时,如何获取选择的CheckBoxField所对应记录的唯一标识值? ●解决方案: 在前台Grid控件中, 添加“<ext:Che ...
- PHP curl post header
第三方教程推荐:https://www.cnblogs.com/CHEUNGKAMING/p/5717429.html
- Atitit.swift 的新特性 以及与java的对比 改进方向attilax 总结
Atitit.swift 的新特性 以及与java的对比 改进方向attilax 总结 1. defer关键字1 2. try!形式存在的“不失败”机制3 3. Guard 4 4. swift的新语 ...