原文:http://docs.pythontab.com/interpy/collections/collections/

容器(Collections)

Python附带一个模块,它包含许多容器数据类型,名字叫作collections。我们将讨论它的作用和用法。

我们将讨论的是:

  • defaultdict
  • counter
  • deque
  • namedtuple
  • enum.Enum (包含在Python 3.4以上)

defaultdict

我个人使用defaultdict较多,与dict类型不同,你不需要检查key是否存在,所以我们能这样做:

 from collections import defaultdict

 colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
) favourite_colours = defaultdict(list) for name, colour in colours:
favourite_colours[name].append(colour) print(favourite_colours)

运行输出

# defaultdict(<type 'list'>,
# {'Arham': ['Green'],
# 'Yasoob': ['Yellow', 'Red'],
# 'Ahmed': ['Silver'],
# 'Ali': ['Blue', 'Black']
# })

另一种重要的是例子就是:当你在一个字典中对一个键进行嵌套赋值时,如果这个键不存在,会触发keyError异常。 defaultdict允许我们用一个聪明的方式绕过这个问题。 首先我分享一个使用dict触发KeyError的例子,然后提供一个使用defaultdict的解决方案。

问题

 some_dict = {}
some_dict['colours']['favourite'] = "yellow" ## 异常输出:KeyError: 'colours'

解决方案

 import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow" ## 运行正常

你可以用json.dumps打印出some_dict,例如:

import json
print(json.dumps(some_dict)) ## 输出: {"colours": {"favourite": "yellow"}}

counter

Counter是一个计数器,它可以帮助我们针对某项数据进行计数。比如它可以用来计算每个人喜欢多少种颜色:

 from collections import Counter

 colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
) favs = Counter(name for name, colour in colours)
print(favs) ## 输出:
## Counter({
## 'Yasoob': 2,
## 'Ali': 2,
## 'Arham': 1,
## 'Ahmed': 1
## })

我们也可以在利用它统计一个文件,例如:

with open('filename', 'rb') as f:
line_count = Counter(f)
print(line_count)

deque

deque提供了一个双端队列,你可以从头/尾两端添加或删除元素。要想使用它,首先我们要从collections中导入deque模块:

from collections import deque

现在,你可以创建一个deque对象。

d = deque()

它的用法就像python的list,并且提供了类似的方法,例如:

 d = deque()
d.append('')
d.append('')
d.append('') print(len(d)) ## 输出: 3 print(d[0]) ## 输出: '1' print(d[-1]) ## 输出: '3'

你可以从两端取出(pop)数据:

d = deque(range(5))
print(len(d)) ## 输出: 5 d.popleft() ## 输出: 0 d.pop() ## 输出: 4 print(d) ## 输出: deque([1, 2, 3])

我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:

d = deque(maxlen=30)

现在当你插入30条数据时,最左边一端的数据将从队列中删除。

你还可以从任一端扩展这个队列中的数据:

 d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d) ## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

namedtuple

您可能已经熟悉元组。
一个元组是一个不可变的列表,你可以存储一个数据的序列,它和命名元组(namedtuples)非常像,但有几个关键的不同。
主要相似点是都不像列表,你不能修改元组中的数据。为了获取元组中的数据,你需要使用整数作为索引:

man = ('Ali', 30)
print(man[0]) ## 输出: Ali

嗯,那namedtuples是什么呢?它把元组变成一个针对简单任务的容器。你不必使用整数索引来访问一个namedtuples的数据。你可以像字典(dict)一样访问namedtuples,但namedtuples是不可变的。

现在你可以看到,我们可以用名字来访问namedtuple中的数据。我们再继续分析它。一个命名元组(namedtuple)有两个必需的参数。它们是元组名称和字段名称。

 from collections import namedtuple

 Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat") print(perry) ## 输出: Animal(name='perry', age=31, type='cat') print(perry.name) ## 输出: 'perry'

在上面的例子中,我们的元组名称是Animal,字段名称是'name','age'和'type'。
namedtuple让你的元组变得自文档了。你只要看一眼就很容易理解代码是做什么的。
你也不必使用整数索引来访问一个命名元组,这让你的代码更易于维护。
而且,namedtuple的每个实例没有对象字典,所以它们很轻量,与普通的元组比,并不需要更多的内存。这使得它们比字典更快。

然而,要记住它是一个元组,属性值在namedtuple中是不可变的,所以下面的代码不能工作:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42 ## 输出:
## Traceback (most recent call last):
## File "", line 1, in
## AttributeError: can't set attribute

你应该使用命名元组来让代码自文档它们向后兼容于普通的元组,这意味着你可以既使用整数索引,也可以使用名称来访问namedtuple

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry[0]) ## 输出: perry

最后,你可以将一个命名元组转换为字典,方法如下:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict()) ## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ...

enum.Enum (Python 3.4+)

另一个有用的容器是枚举对象,它属于enum模块,存在于Python 3.4以上版本中(同时作为一个独立的PyPI包enum34供老版本使用)。Enums(枚举类型)基本上是一种组织各种东西的方式。

让我们回顾一下上一个'Animal'命名元组的例子。
它有一个type字段,问题是,type是一个字符串。
那么问题来了,万一程序员输入了Cat,因为他按到了Shift键,或者输入了'CAT',甚至'kitten'?

枚举可以帮助我们避免这个问题,通过不使用字符串。考虑以下这个例子:

 from collections import namedtuple
from enum import Enum class Species(Enum):
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
# 依次类推 # 但我们并不想关心同一物种的年龄,所以我们可以使用一个别名
kitten = 1 # (译者注:幼小的猫咪)
puppy = 2 # (译者注:幼小的狗狗) Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type=Species.cat)
drogon = Animal(name="Drogon", age=4, type=Species.dragon)
tom = Animal(name="Tom", age=75, type=Species.cat)
charlie = Animal(name="Charlie", age=2, type=Species.kitten)

现在,我们进行一些测试:

>>> charlie.type == tom.type
True
>>> charlie.type
<Species.cat: 1>

这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型。

有三种方法访问枚举数据,例如以下方法都可以获取到'cat'的值:

Species(1)
Species['cat']
Species.cat

只是一个快速浏览collections模块的介绍,建议你阅读本文最后的官方文档。

python collections(容器)模块的更多相关文章

  1. python初探-collections容器数据类型

    collections容器数据类型是对基本数据类型的补充,简单介绍下计数器.有序字典.默认字典.可命名元祖.队列. 计数器(Counter) Counter是对字典类型的补充,用于追踪值得出现次数 c ...

  2. python的常用模块之collections模块

    python的常用模块之collections模块 python全栈开发,模块,collections 认识模块 什么是模块?    常见的场景:一个模块就是一个包含了python定义和声明的文件,文 ...

  3. (转)python collections模块详解

    python collections模块详解 原文:http://www.cnblogs.com/dahu-daqing/p/7040490.html 1.模块简介 collections包含了一些特 ...

  4. Python collections模块总结

    Python collections模块总结 除了我们使用的那些基础的数据结构,还有包括其它的一些模块提供的数据结构,有时甚至比基础的数据结构还要好用. collections ChainMap 这是 ...

  5. Python内建模块--collections

    python内建模块--collections collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点 ...

  6. python collections defaultdict

    class_counts  = defaultdict(int) 一.关于defaultdict 在Python里面有一个模块collections,解释是数据类型容器模块.这里面有一个collect ...

  7. 周末班:Python基础之模块

    什么是模块 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写 ...

  8. Python3标准库:collections容器数据类型

    1. collections容器数据类型 collections模块包含除内置类型list.dict和tuple以外的其他容器数据类型. 1.1 ChainMap搜索多个字典 ChainMap类管理一 ...

  9. python 小兵(12)模块1

    序列化 我们今天学习下序列化,什么是序列化呢? 将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 为什么要有序列化模块: 比如,我们在python代码中计算的一个数据需要给另外一段程序使用 ...

随机推荐

  1. 关于Python、Java、C#语言的一些比较

    不能说某某语言不好! 首先,千万别说某一个语言好不好,应为这样的用词是错的,我曾经在好多场合听到一些程序员说java好,.net不好这类的话. 其实语言不分好坏,只是在具体的某些领域或业务场景上不合适 ...

  2. 【Hazard of Overfitting】林轩田机器学习基石

    首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) ...

  3. Python 字符串换行的几种方式

    第一种: x0 = '<?xml version="1.0"?>' \ '<ol>' \ ' <li><a href="/pyt ...

  4. freemaker参考地址

    https://zhidao.baidu.com/question/1304215193023416939.html

  5. NGUI执行基本事件的原理

    通常我们为对象附加一个脚本组件,脚本组件只要加此鼠标处理事件方法,这个对象就有了点击事件了: void OnClick() { Debug.Log("onclick"); } 可为 ...

  6. windows版本cloudbase-init流程说明

    源码流程说明 - 程序首先判断操作系统类型,加载对应的模块 - 加载服务,服务共分为四种: 'cloudbaseinit.metadata.services.httpservice.HttpServi ...

  7. HDU 4763 Theme Section ( KMP next函数应用 )

    设串为str, 串长为len. 对整个串求一遍next函数,从串结尾开始顺着next函数往前找<=len/3的最长串,假设串长为ans,由于next的性质,所以找到的串肯定满足E……E这种形式, ...

  8. java作业 2017.10.14

    课后作业一 1.设计思想: (1)通过组合数公式计算:分别输入中的n和k的值.定义一个计算n!的方法,然后调用方法分别计算出n!,k!,(n-k)!,然后通过公式=n!/(k!*(n-k)!)算出的值 ...

  9. HDU 2491

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Priest John's Busiest Day Time Limit: 4000/2000 MS (Java/Others)    ...

  10. Pty的字符串(string)

    题目描述 在神秘的东方有一棵奇葩的树,它有一个固定的根节点(编号为1).树的每条边上都是一个字符,字符为a,b,c中的一个,你可以从树上的任意一个点出发,然后沿着远离根的边往下行走,在任意一个节点停止 ...