原文:http://docs.pythontab.com/interpy/collections/collections/

容器(Collections)

Python附带一个模块,它包含许多容器数据类型,名字叫作collections。我们将讨论它的作用和用法。

我们将讨论的是:

  • defaultdict
  • counter
  • deque
  • namedtuple
  • enum.Enum (包含在Python 3.4以上)

defaultdict

我个人使用defaultdict较多,与dict类型不同,你不需要检查key是否存在,所以我们能这样做:

 from collections import defaultdict

 colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
) favourite_colours = defaultdict(list) for name, colour in colours:
favourite_colours[name].append(colour) print(favourite_colours)

运行输出

# defaultdict(<type 'list'>,
# {'Arham': ['Green'],
# 'Yasoob': ['Yellow', 'Red'],
# 'Ahmed': ['Silver'],
# 'Ali': ['Blue', 'Black']
# })

另一种重要的是例子就是:当你在一个字典中对一个键进行嵌套赋值时,如果这个键不存在,会触发keyError异常。 defaultdict允许我们用一个聪明的方式绕过这个问题。 首先我分享一个使用dict触发KeyError的例子,然后提供一个使用defaultdict的解决方案。

问题

 some_dict = {}
some_dict['colours']['favourite'] = "yellow" ## 异常输出:KeyError: 'colours'

解决方案

 import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict['colours']['favourite'] = "yellow" ## 运行正常

你可以用json.dumps打印出some_dict,例如:

import json
print(json.dumps(some_dict)) ## 输出: {"colours": {"favourite": "yellow"}}

counter

Counter是一个计数器,它可以帮助我们针对某项数据进行计数。比如它可以用来计算每个人喜欢多少种颜色:

 from collections import Counter

 colours = (
('Yasoob', 'Yellow'),
('Ali', 'Blue'),
('Arham', 'Green'),
('Ali', 'Black'),
('Yasoob', 'Red'),
('Ahmed', 'Silver'),
) favs = Counter(name for name, colour in colours)
print(favs) ## 输出:
## Counter({
## 'Yasoob': 2,
## 'Ali': 2,
## 'Arham': 1,
## 'Ahmed': 1
## })

我们也可以在利用它统计一个文件,例如:

with open('filename', 'rb') as f:
line_count = Counter(f)
print(line_count)

deque

deque提供了一个双端队列,你可以从头/尾两端添加或删除元素。要想使用它,首先我们要从collections中导入deque模块:

from collections import deque

现在,你可以创建一个deque对象。

d = deque()

它的用法就像python的list,并且提供了类似的方法,例如:

 d = deque()
d.append('')
d.append('')
d.append('') print(len(d)) ## 输出: 3 print(d[0]) ## 输出: '1' print(d[-1]) ## 输出: '3'

你可以从两端取出(pop)数据:

d = deque(range(5))
print(len(d)) ## 输出: 5 d.popleft() ## 输出: 0 d.pop() ## 输出: 4 print(d) ## 输出: deque([1, 2, 3])

我们也可以限制这个列表的大小,当超出你设定的限制时,数据会从对队列另一端被挤出去(pop)。
最好的解释是给出一个例子:

d = deque(maxlen=30)

现在当你插入30条数据时,最左边一端的数据将从队列中删除。

你还可以从任一端扩展这个队列中的数据:

 d = deque([1,2,3,4,5])
d.extendleft([0])
d.extend([6,7,8])
print(d) ## 输出: deque([0, 1, 2, 3, 4, 5, 6, 7, 8])

namedtuple

您可能已经熟悉元组。
一个元组是一个不可变的列表,你可以存储一个数据的序列,它和命名元组(namedtuples)非常像,但有几个关键的不同。
主要相似点是都不像列表,你不能修改元组中的数据。为了获取元组中的数据,你需要使用整数作为索引:

man = ('Ali', 30)
print(man[0]) ## 输出: Ali

嗯,那namedtuples是什么呢?它把元组变成一个针对简单任务的容器。你不必使用整数索引来访问一个namedtuples的数据。你可以像字典(dict)一样访问namedtuples,但namedtuples是不可变的。

现在你可以看到,我们可以用名字来访问namedtuple中的数据。我们再继续分析它。一个命名元组(namedtuple)有两个必需的参数。它们是元组名称和字段名称。

 from collections import namedtuple

 Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat") print(perry) ## 输出: Animal(name='perry', age=31, type='cat') print(perry.name) ## 输出: 'perry'

在上面的例子中,我们的元组名称是Animal,字段名称是'name','age'和'type'。
namedtuple让你的元组变得自文档了。你只要看一眼就很容易理解代码是做什么的。
你也不必使用整数索引来访问一个命名元组,这让你的代码更易于维护。
而且,namedtuple的每个实例没有对象字典,所以它们很轻量,与普通的元组比,并不需要更多的内存。这使得它们比字典更快。

然而,要记住它是一个元组,属性值在namedtuple中是不可变的,所以下面的代码不能工作:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
perry.age = 42 ## 输出:
## Traceback (most recent call last):
## File "", line 1, in
## AttributeError: can't set attribute

你应该使用命名元组来让代码自文档它们向后兼容于普通的元组,这意味着你可以既使用整数索引,也可以使用名称来访问namedtuple

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="perry", age=31, type="cat")
print(perry[0]) ## 输出: perry

最后,你可以将一个命名元组转换为字典,方法如下:

from collections import namedtuple

Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type="cat")
print(perry._asdict()) ## 输出: OrderedDict([('name', 'Perry'), ('age', 31), ...

enum.Enum (Python 3.4+)

另一个有用的容器是枚举对象,它属于enum模块,存在于Python 3.4以上版本中(同时作为一个独立的PyPI包enum34供老版本使用)。Enums(枚举类型)基本上是一种组织各种东西的方式。

让我们回顾一下上一个'Animal'命名元组的例子。
它有一个type字段,问题是,type是一个字符串。
那么问题来了,万一程序员输入了Cat,因为他按到了Shift键,或者输入了'CAT',甚至'kitten'?

枚举可以帮助我们避免这个问题,通过不使用字符串。考虑以下这个例子:

 from collections import namedtuple
from enum import Enum class Species(Enum):
cat = 1
dog = 2
horse = 3
aardvark = 4
butterfly = 5
owl = 6
platypus = 7
dragon = 8
unicorn = 9
# 依次类推 # 但我们并不想关心同一物种的年龄,所以我们可以使用一个别名
kitten = 1 # (译者注:幼小的猫咪)
puppy = 2 # (译者注:幼小的狗狗) Animal = namedtuple('Animal', 'name age type')
perry = Animal(name="Perry", age=31, type=Species.cat)
drogon = Animal(name="Drogon", age=4, type=Species.dragon)
tom = Animal(name="Tom", age=75, type=Species.cat)
charlie = Animal(name="Charlie", age=2, type=Species.kitten)

现在,我们进行一些测试:

>>> charlie.type == tom.type
True
>>> charlie.type
<Species.cat: 1>

这样就没那么容易错误,我们必须更明确,而且我们应该只使用定义后的枚举类型。

有三种方法访问枚举数据,例如以下方法都可以获取到'cat'的值:

Species(1)
Species['cat']
Species.cat

只是一个快速浏览collections模块的介绍,建议你阅读本文最后的官方文档。

python collections(容器)模块的更多相关文章

  1. python初探-collections容器数据类型

    collections容器数据类型是对基本数据类型的补充,简单介绍下计数器.有序字典.默认字典.可命名元祖.队列. 计数器(Counter) Counter是对字典类型的补充,用于追踪值得出现次数 c ...

  2. python的常用模块之collections模块

    python的常用模块之collections模块 python全栈开发,模块,collections 认识模块 什么是模块?    常见的场景:一个模块就是一个包含了python定义和声明的文件,文 ...

  3. (转)python collections模块详解

    python collections模块详解 原文:http://www.cnblogs.com/dahu-daqing/p/7040490.html 1.模块简介 collections包含了一些特 ...

  4. Python collections模块总结

    Python collections模块总结 除了我们使用的那些基础的数据结构,还有包括其它的一些模块提供的数据结构,有时甚至比基础的数据结构还要好用. collections ChainMap 这是 ...

  5. Python内建模块--collections

    python内建模块--collections collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点 ...

  6. python collections defaultdict

    class_counts  = defaultdict(int) 一.关于defaultdict 在Python里面有一个模块collections,解释是数据类型容器模块.这里面有一个collect ...

  7. 周末班:Python基础之模块

    什么是模块 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写 ...

  8. Python3标准库:collections容器数据类型

    1. collections容器数据类型 collections模块包含除内置类型list.dict和tuple以外的其他容器数据类型. 1.1 ChainMap搜索多个字典 ChainMap类管理一 ...

  9. python 小兵(12)模块1

    序列化 我们今天学习下序列化,什么是序列化呢? 将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 为什么要有序列化模块: 比如,我们在python代码中计算的一个数据需要给另外一段程序使用 ...

随机推荐

  1. hihocoder1014 : Trie树

    #1014 : Trie树 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助, ...

  2. P3817 小A的糖果(洛谷月赛)

    P3817 小A的糖果 题目描述 小A有N个糖果盒,第i个盒中有a[i]颗糖果. 小A每次可以从其中一盒糖果中吃掉一颗,他想知道,要让任意两个相邻的盒子中加起来都只有x颗或以下的糖果,至少得吃掉几颗糖 ...

  3. Kafka消费分组和分区分配策略

    Kafka消费分组,消息消费原理 同一个消费组里的消费者不能消费同一个分区,不同消费组的消费组可以消费同一个分区 Kafka分区分配策略 在 Kafka 内部存在两种默认的分区分配策略:Range 和 ...

  4. 5.bootstrap栅格 清除浮动

    只要用到栅格,就注意要清除浮动,清除方法就是在父元素的class上加一个clearfix 1.情景: . <div class="col-sm-7"> <div ...

  5. Postman-简单使用(1)

    Postman-简单使用(1) Postman-简单使用 Postman-进阶使用 Postman-CI集成Jenkins Postman功能(https://www.getpostman.com/f ...

  6. laravel5.5队列

    目录 简单实例 1. 简介和配置 1.1 好处 1.2 配置文件 1.3 队列驱动的必要配置 2. 创建任务 2.1 生成任务类 2.2 修改任务类 2.3 分发任务 2.4 自定义队列 & ...

  7. SQL Server无法连接到数据库

    连接数据库的时候出现如下错误: 我解决的使用方法: 第一步:关闭上面的错误,取消连接数据库. 第二步:开始->程序->Microsoft SQL Server 2008 R2->配置 ...

  8. h5布局之道(最终篇)

    大家好,时隔一年多了,前几篇探讨的rem布局后来又有改进不过一直没有想起来更新博客,rem布局淘宝用的也比较早,有兴趣的可以看看淘宝的flexible ,我的用法比较简单,原来一样,废话不说了直接上代 ...

  9. 【java下午茶】12306的双人票

    明天下午就要和客户谈需求了,今天还在列车上假象着明天的情景,由于这是一个旅游的项目,所以想尽可能设计得人性化一些. 不过有件很不爽的事情就是和老公的位子是分开的,虽然我们订的是连坐号.就这个问题也是我 ...

  10. chromedriver版本支持的Chrome版本

    下载chromedriver,链接:http://chromedriver.storage.googleapis.com/index.html   chromedirver版本 支持的Chrome版本 ...