Circle and Points
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 7327   Accepted: 2651
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle.


Fig 1. Circle and Points

Input

The
input consists of a series of data sets, followed by a single line only
containing a single character '0', which indicates the end of the input.
Each data set begins with a line containing an integer N, which
indicates the number of points in the data set. It is followed by N
lines describing the coordinates of the points. Each of the N lines has
two decimal fractions X and Y, describing the x- and y-coordinates of a
point, respectively. They are given with five digits after the decimal
point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0
<= Y <= 10.0. No two points are closer than 0.0001. No two points
in a data set are approximately at a distance of 2.0. More precisely,
for any two points in a data set, the distance d between the two never
satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a
data set are simultaneously very close to a single circle of radius one.
More precisely, let P1, P2, and P3 be any three points in a data set,
and d1, d2, and d3 the distances from an arbitrarily selected point in
the xy-plane to each of them respectively. Then it never simultaneously
holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For
each data set, print a single line containing the maximum number of
points in the data set that can be simultaneously enclosed by a circle
of radius one. No other characters including leading and trailing spaces
should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

代码转自,不想去弄了。。以后就做模板用好了 http://www.cnblogs.com/-sunshine/archive/2012/10/11/2719859.html
贴个模板:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int N = ;
struct Point{
double x,y;
}p[N];
struct Node{
double angle;
bool in;
}arc[];
int n,cnt;
double R;
double dist(Point p1,Point p2){
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool cmp(Node n1,Node n2){
return n1.angle!=n2.angle?n1.angle<n2.angle:n1.in>n2.in;
}
void MaxCircleCover(){
int ans=;
for(int i=;i<n;i++){
int cnt=;
for(int j=;j<n;j++){
if(i==j) continue;
if(dist(p[i],p[j])>R*) continue;
double angle=atan2(p[i].y-p[j].y,p[i].x-p[j].x);
double phi=acos(dist(p[i],p[j])/);
arc[cnt].angle=angle-phi;arc[cnt++].in=true;
arc[cnt].angle=angle+phi;arc[cnt++].in=false;
}
sort(arc,arc+cnt,cmp);
int tmp=;
for(int i=;i<cnt;i++){
if(arc[i].in) tmp++;
else tmp--;
ans=max(ans,tmp);
}
}
printf("%d\n",ans);
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
//scanf("%lf",&R);
R = ; //此题R为1
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
MaxCircleCover();
}
return ;
}

poj 1981(单位圆覆盖最多点问题模板)的更多相关文章

  1. bzoj1338: Pku1981 Circle and Points单位圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1338 1338: Pku1981 Circle and Points单位圆覆盖 Time ...

  2. POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]

    首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...

  3. poj 1981 Circle and Points

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8131   Accepted: 2899 ...

  4. 【[Offer收割]编程练习赛14 D】剑刃风暴(半径为R的圆能够覆盖的平面上最多点数目模板)

    [题目链接]:http://hihocoder.com/problemset/problem/1508 [题意] [题解] 求一个半径为R的圆能够覆盖的平面上的n个点中最多的点数; O(N2log2N ...

  5. POJ 3468 A Simple Problem with Integers (线段树多点更新模板)

    题意: 给定一个区间, 每个区间有一个初值, 然后给出Q个操作, C a b c是给[a,b]中每个数加上c, Q a b 是查询[a,b]的和 代码: #include <cstdio> ...

  6. POJ-1981 Circle and Points 单位圆覆盖

    题目链接:http://poj.org/problem?id=1981 容易想到直接枚举两个点,然后确定一个圆来枚举,算法复杂度O(n^3). 这题还有O(n^2*lg n)的算法.将每个点扩展为单位 ...

  7. POJ 1981 Circle and Points (扫描线)

    [题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...

  8. 【POJ 1981】Circle and Points(已知圆上两点求圆心坐标)

    [题目链接]:http://poj.org/problem?id=1981 [题意] 给你n个点(n<=300); 然后给你一个半径R: 让你在平面上找一个半径为R的圆; 这里R=1 使得这个圆 ...

  9. 【POJ 1981 】Circle and Points

    当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath ...

随机推荐

  1. phpstorm调试配置 Xdebug

    这已经楼主第二次因为phpstorm的调试配置折腾了几个小时,这次一定要记下来!!! 以Xdebug chrome浏览器为例 一:安装 JetBrains IDE Support 二:安装 Xdebu ...

  2. 第四模块:网络编程进阶&数据库开发 口述

    进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 子进程死了之后 ,父进程关闭的时候要清理掉子进程的僵尸进程(收尸),孤儿进程是指父进程先死掉了的,交给init管理. join() 等待子进 ...

  3. Android学习记录(8)—Activity的四种加载模式及有关Activity横竖屏切换的问题

    Activity有四种加载模式:standard(默认), singleTop, singleTask和 singleInstance.以下逐一举例说明他们的区别: standard:Activity ...

  4. 解决NSTimer循环引用

    NSTimer常见用法 @interface XXClass : NSObject - (void)start; - (void)stop; @end @implementation XXClass ...

  5. 【Perceptron Learning Algorithm】林轩田机器学习基石

    直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...

  6. 每天一个Linux命令(9):cp命令

    cp命令用来将一个或多个源文件或者目录复制到指定的目的文件或目录.它可以将单个源文件复制成一个指定文件名的具体的文件或一个已经存在的目录下.cp命令还支持同时复制多个文件,当一次复制多个文件时,目标文 ...

  7. 使用selenium监听每一步操作

    1.创建类LogEventListener.java, 如下: package com.demo; import org.openqa.selenium.By; import org.openqa.s ...

  8. Oz 创建CentOS7镜像

    参考链接: https://github.com/clalancette/oz/wiki/Oz-template-description-language https://github.com/cla ...

  9. Edu 0空投合约源码

    https://etherscan.io/address/0xa0872ee815b8dd0f6937386fd77134720d953581#code pragma solidity ^0.4.18 ...

  10. 201621123033 《Java程序设计》第1周学习总结

    1. 本周学习总结 · jdk.jre.jvm的含义及相关概念(具体见下文回答) · 会使用记事本及简单编辑器编写Java程序,理解javac和java命令的含义(具体见下文回答) · java与C语 ...