题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302

对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p)的倍数的重量

对于两个物品,设它们的体积为v1和v2,那么,在背包参数为p的情况下,他能达到gcd(v1,v2,p)的倍数的重量

对于每个物品,我们记下它的gcd(v,p),问题变为给定一个x,求有多少个v的集合,是集合内所有元素的gcd能被x整除

我们设dp[i][j]表示p的前i个约数有多少种组合是组合后的gcd为j。

接下来,我们考虑怎么转移

先给伪代码(不加取模):

for(i=1;i<=约数个数;++i)

  for(j=1;j<=约数个数;++j){

    x=gcd(第i个约数,第j个约数)dp[i][x]+=dp[i-1][j]*(2^约数i的个数-1);

    dp[i][j]+=dp[i][j-1];

  }

这种转移方式有点奇怪,是个好思路,我们平常的dp都是枚举状态,然后在寻找能转移到我们枚举的状态的状态。这个dp是先枚举已经计算完成的状态,在计算这些状态能转移到哪,更新,有点类似noip2017 提高组day1T3的拓扑排序dp写法。

上AC代码(wxy数组就是dp数组,有些细节上的处理我还没讲,可以自己实现,ps:我常数有点大(两个map)):

#include <bits/stdc++.h>
using namespace std;
;
;
#define _l long long
int n,q,p,ys[N];
map<int,int>reff;
map<int,int>cnt;
_l p2[N*N],wxy[N][N],an[N];
 ? y:gcd(y,x%y);}
int main(){
    scanf("%d%d%d",&n,&q,&p);
    int i;
    ;i*i<=p;++i)){
        ys[++ys[]]=i,reff[i]=ys[];]]=p/i,reff[p/i]=ys[];
    }
    ;i<=n;++i){
        int x;scanf("%d",&x);x=gcd(max(x,p),min(x,p));
        ++cnt[x];
    }
    ]=;
    ;i<=n;++i)p2[i]=(p2[i-]*)%md;wxy[][reff[p]]=;
    ;i<=ys[];++i);j<=ys[];++j){
        int tmp=gcd(max(ys[i],ys[j]),min(ys[i],ys[j]));
        wxy[i][reff[tmp]]=(wxy[i][reff[tmp]]+wxy[i-][j]*(_l)(p2[cnt[ys[i]]]-))%md;
        wxy[i][j]=(wxy[i-][j]+wxy[i][j])%md;
    }
    ;i<=ys[];++i);j<=ys[];++j))an[i]=(an[i]+wxy[ys[]][j])%md;
    while(q--){
        int x;scanf("%d",&x);x=gcd(max(x,p),min(x,p));
        printf("%lld\n",an[reff[x]]);
    }
}

haoi2018奇怪的背包题解的更多相关文章

  1. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

  2. [HAOI2018]奇怪的背包 (DP,数论)

    [HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达 ...

  3. 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告

    P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...

  4. BZOJ5302: [Haoi2018]奇怪的背包

    BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...

  5. BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】

    题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...

  6. 洛谷P4495 [HAOI2018]奇怪的背包(数论)

    题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...

  7. bzoj 5302: [Haoi2018]奇怪的背包

    Description Solution 首先 \(v_1,v_2,v_3...v_n,P\) 能够构成的最小数是 \(gcd(P,v_1,v_2,v_3...v_n)\) 然后 \(gcd(P,v_ ...

  8. Luogu4495 [HAOI2018] 奇怪的背包 【扩展欧几里得算法】

    题目分析: 首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个. 由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1, ...

  9. [HAOI2018]奇怪的背包

    题目 暴力\(dp\)好有道理啊 于是我们来个反演吧 考虑一个体积序列\(\{v_1,v_2,...v_n\}\)能凑成\(w\)的条件 显然是 \[v_1x_1+v_2x_2+...+v_nx_n\ ...

随机推荐

  1. Metaspoit的使用

    一.环境的使用和搭建 首先我的攻击机和靶机都搭建在虚拟机上,选用的是VMware Workstation Pro虚拟机. 攻击机选用的是Linux kali 2017.2版本,而靶机安装的是XP sp ...

  2. AtCoder Grand Contest 015 题解

    A - A+...+B Problem 常识 Problem Statement Snuke has N integers. Among them, the smallest is A, and th ...

  3. bzoj 1007: [HNOI2008]水平可见直线 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include ...

  4. BZOJ5443:[CEOI2018]Lottery

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:https://www.lydsy.com/JudgeOnline/probl ...

  5. Poj_1002_java解决

    一.Description 电话号码的标准格式是七位十进制数,并在第三.第四位数字之间有一个连接符.电话拨号盘提供了从字母到数字的映射,映射关系如下: A, B, 和C 映射到 2 D, E, 和F ...

  6. Erlang generic standard behaviours -- summary

    gen_server 相关的片段分析得也差不多了, 这篇作为一个简要的总结.这一系列相关的分析暂且告一段落(之后如有必要,还会回来的 ^^ ),下一个系列主要是以pool 相关, 包括但不仅限于开源项 ...

  7. C#中打开文件、目录、保存窗口

    打开文件代码: try { OpenFileDialog of = new OpenFileDialog(); of.ShowDialog(); txt_destFilePath.Text = of. ...

  8. shell分库备份

    分库备份企业实战题7:如何实现对MySQL数据库进行分库备份,请用脚本实现 #!/bin/bash MysqlUser=root PassWord=root Port= Socket="/u ...

  9. 把Nutch爬虫部署到Hadoop集群上

    原文地址:http://cn.soulmachine.me/blog/20140204/ 把Nutch爬虫部署到Hadoop集群上 Feb 4th, 2014 | Comments 软件版本:Nutc ...

  10. 2、Tophat align_summary.txt and samtools flagstat accepted_hits.bam disagree

    ###https://www.biostars.org/p/195758/ Left reads: Input : 49801387 Mapped : 46258301 (92.9% of input ...