题意:

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

=>有向图我们先考虑缩点。然后观察缩点后的图可以发现新的路径中必定只有一条边是反向的才符合条件。那么我们可以联想到某道最短路的题将边反向存一遍后分别从s和t跑一跑。那么这里bfs跑一跑就行了。然后有一个坑点:这种重建图的注意es和edges不然es会在中途就被修改掉了。。。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define qwq(x) for(edge *o=head[x];o;o=o->next)
#define qaq(x) for(edge *o=hd[x];o;o=o->next)
#define TAT(x) for(edge *o=eo[x];o;o=o->next)
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e5+5;
const int inf=0x7f7f7f7f; struct edge{
int to;edge *next;
};edge es[nmax],edges[nmax<<1],*pt=es,*head[nmax],*hd[nmax],*eo[nmax];
void add(int u,int v){
pt->to=v;pt->next=head[u];head[u]=pt++;
}
void adde(int u,int v){
pt->to=v;pt->next=hd[u];hd[u]=pt++;
pt->to=u;pt->next=eo[v];eo[v]=pt++;
}
int pre[nmax],dfs_clock=0,scc_cnt=0,sccno[nmax],sm[nmax];
stack<int>s;
int dfs(int x){
int lowu=pre[x]=++dfs_clock;s.push(x);
qwq(x){
if(!pre[o->to]) lowu=min(lowu,dfs(o->to));
else if(!sccno[o->to]) lowu=min(lowu,pre[o->to]);
}
if(lowu==pre[x]){
++scc_cnt;int tc=0;
while(1){
int tx=s.top();s.pop();
sccno[tx]=scc_cnt;++tc;
if(x==tx) break;
}
sm[scc_cnt]=tc;
}
return lowu;
} queue<int>q;bool vis[nmax];int f[nmax],g[nmax];
int test_cnt=0;
void bfs1(int x){
q.push(x);f[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
qaq(tx) if(f[o->to]<f[tx]+sm[o->to]){
f[o->to]=f[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
}
void bfs2(int x){
q.push(x);g[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
TAT(tx) if(g[o->to]<g[tx]+sm[o->to]){
g[o->to]=g[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
} int main(){
int n=read(),m=read(),u,v;
rep(i,1,m) u=read(),v=read(),add(u,v);
rep(i,1,n) if(!pre[i]) dfs(i);
//rep(i,1,n) printf("%d ",sccno[i]);printf("\n"); pt=edges;
rep(i,1,n) qwq(i) if(sccno[i]!=sccno[o->to]) adde(sccno[i],sccno[o->to]);
bfs1(sccno[1]);bfs2(sccno[1]);
//rep(i,1,scc_cnt) printf("%d %d\n",f[i],g[i]); int ans=sm[sccno[1]];
rep(i,1,scc_cnt) qaq(i) {
if(g[i]&&f[o->to]) ans=max(ans,g[i]+f[o->to]-sm[sccno[1]]);
}
printf("%d\n",ans);return 0;
}

  

3887: [Usaco2015 Jan]Grass Cownoisseur

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 179  Solved: 92
[Submit][Status][Discuss]

Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
 

Sample Input

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7

Sample Output

6

HINT

 

Source

bzoj3887: [Usaco2015 Jan]Grass Cownoisseur的更多相关文章

  1. BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*

    BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...

  2. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  3. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  4. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  7. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  8. BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)

    分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...

  9. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

随机推荐

  1. <你的孤独,虽败犹荣> 很喜欢的句子

    希望未来的工作中能够经常出差,做一个能看到除了湖南之外的世界的人 即使我们一辈子给人打工,也要打自己愿意打的工 正在经历的孤独,我们称之为迷茫,经过的那些孤独,我们称之为成长 青春,是一个容量极其有限 ...

  2. docker-compose搭建wordpress[转]

    1.安装docker-compose apt-get install docker-compose 发现下载的是旧版本,不支持2.0的配置文件 还是下载新版本吧,去github查看最新版本https: ...

  3. ubuntu命令错误集

    1.在ubuntu命令行使用rz从windows传输文件时出现乱码 解决方法:使用 rz -e    选项进行传输,一般小文件传输不用加 -e 选项,大文件传输需要.

  4. Webpack打包时警告 - Critical dependency: the request of a dependency is an expression

    关于解决 [Webpack] Critical dependency: the request of a dependency is an expression ------------------- ...

  5. 洛谷 P1439 【模板】最长公共子序列LCS 解题报告

    题目传送门 是一道十分经典的LCS问题 很容易想到  的一般算法:主题代码如下: for (int i = 1; i <= n; i++) for (int j = 1; j <= n; ...

  6. 洛谷P2068 统计和

    题目描述 给定一个长度为\(n(n \leq 100000)\),初始值都为\(0\)的序列,\(x(x \leq 10000)\)次的修改某些位置上的数字,每次加上一个数,然后提出\(y (y \l ...

  7. Angular学习笔记 ——input 标签上的【name属性】和【ngModelOptions属性】

    利用“@angular/forms" 创建<form>表单的时候,系统默认会创建一个”FormGroup"的对象. 使用带有“ngModel"的”<in ...

  8. CBV 与 FBV

    FBV:function based view 视图函数,是指之前用的 views.py 中基于函数的开发,url 都是通过函数来实现的,每个 url 对应的函数之间都是独立的. 直接在views.p ...

  9. Spring学习(二)Spring的bean管理(XML)

    Bean的实例化方式 1.在Spring里面通过配置文件创建对象 2.bean实例化的三种方式第一种:使用类的无参数构造函数创建(最常用的方式,第2种和第3种方法一般不用) 如果类里面没有无参的构造函 ...

  10. 获取跨域请求的自定义的response headers

    一般情况下,使用ajax的getAllResponseHeaders这个方法只能得到response headers中的content-type的信息,其他服务器端放入response header中 ...