题意:

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

=>有向图我们先考虑缩点。然后观察缩点后的图可以发现新的路径中必定只有一条边是反向的才符合条件。那么我们可以联想到某道最短路的题将边反向存一遍后分别从s和t跑一跑。那么这里bfs跑一跑就行了。然后有一个坑点:这种重建图的注意es和edges不然es会在中途就被修改掉了。。。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define qwq(x) for(edge *o=head[x];o;o=o->next)
#define qaq(x) for(edge *o=hd[x];o;o=o->next)
#define TAT(x) for(edge *o=eo[x];o;o=o->next)
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e5+5;
const int inf=0x7f7f7f7f; struct edge{
int to;edge *next;
};edge es[nmax],edges[nmax<<1],*pt=es,*head[nmax],*hd[nmax],*eo[nmax];
void add(int u,int v){
pt->to=v;pt->next=head[u];head[u]=pt++;
}
void adde(int u,int v){
pt->to=v;pt->next=hd[u];hd[u]=pt++;
pt->to=u;pt->next=eo[v];eo[v]=pt++;
}
int pre[nmax],dfs_clock=0,scc_cnt=0,sccno[nmax],sm[nmax];
stack<int>s;
int dfs(int x){
int lowu=pre[x]=++dfs_clock;s.push(x);
qwq(x){
if(!pre[o->to]) lowu=min(lowu,dfs(o->to));
else if(!sccno[o->to]) lowu=min(lowu,pre[o->to]);
}
if(lowu==pre[x]){
++scc_cnt;int tc=0;
while(1){
int tx=s.top();s.pop();
sccno[tx]=scc_cnt;++tc;
if(x==tx) break;
}
sm[scc_cnt]=tc;
}
return lowu;
} queue<int>q;bool vis[nmax];int f[nmax],g[nmax];
int test_cnt=0;
void bfs1(int x){
q.push(x);f[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
qaq(tx) if(f[o->to]<f[tx]+sm[o->to]){
f[o->to]=f[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
}
void bfs2(int x){
q.push(x);g[x]=sm[x];int tx;clr(vis,0);
while(!q.empty()){
tx=q.front();q.pop();vis[tx]=0;
TAT(tx) if(g[o->to]<g[tx]+sm[o->to]){
g[o->to]=g[tx]+sm[o->to];
if(!vis[o->to]) q.push(o->to),vis[o->to]=1;
}
}
} int main(){
int n=read(),m=read(),u,v;
rep(i,1,m) u=read(),v=read(),add(u,v);
rep(i,1,n) if(!pre[i]) dfs(i);
//rep(i,1,n) printf("%d ",sccno[i]);printf("\n"); pt=edges;
rep(i,1,n) qwq(i) if(sccno[i]!=sccno[o->to]) adde(sccno[i],sccno[o->to]);
bfs1(sccno[1]);bfs2(sccno[1]);
//rep(i,1,scc_cnt) printf("%d %d\n",f[i],g[i]); int ans=sm[sccno[1]];
rep(i,1,scc_cnt) qaq(i) {
if(g[i]&&f[o->to]) ans=max(ans,g[i]+f[o->to]-sm[sccno[1]]);
}
printf("%d\n",ans);return 0;
}

  

3887: [Usaco2015 Jan]Grass Cownoisseur

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 179  Solved: 92
[Submit][Status][Discuss]

Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
 

Sample Input

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7

Sample Output

6

HINT

 

Source

bzoj3887: [Usaco2015 Jan]Grass Cownoisseur的更多相关文章

  1. BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*

    BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...

  2. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  3. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  4. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  7. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  8. BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)

    分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...

  9. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

随机推荐

  1. 浅谈JavaScript -- 正则表达式

    什么是正则表达式? 正则表达式是由一个字符序列形成的搜索模式.可用于文本搜索和文本替换. 语法:/正则表达式主体/修饰符(可选) var patt=new RegExp(pattern,modifie ...

  2. C语言经典算法100例(三)

    1.河内之塔 说明河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市:1883年法国数学家 Edoua ...

  3. 如何在app里利用js调取手机第三方地图--以高德地图和百度地图为例(2)

    接着上篇文章说一下js调取第三方地图的问题,上次的方式是通过一个链接直接接到了第三方的web页面,又从第三方的web页面调用的第三方app;结果,这个方法被否定了,因为需求不是这样,需求直接就想调用第 ...

  4. JDK源码-java.lang.String

    1.开篇明志 本文来看看String的源码. 2.Java7 API String介绍 String 类代表字符串.Java 程序中的所有字符串字面值(如 “abc” )都作为此类的实例实现. 字符串 ...

  5. 让你的spring-boot应用日志随心所欲--spring boot日志深入分析

    1.spring boot日志概述 spring boot使用Commons Logging作为内部的日志系统,并且给Java Util Logging,Log4J2以及Logback都提供了默认的配 ...

  6. Jmeter 线程组、运行次数参数化(转)Jpara1=4 -Jpara2=5

    Jmeter的jmx文件保存了线程数和运行次数等参数,这个参数可以在命令行中传入参数的方式来修改数值 步骤如下 1.生成线程和运行次数的参数 Jmeter选项中函数助手对话框,选中__P参数,这个参数 ...

  7. 如何在html文件中导入header、footer等

    1.include是php函数,所以确实需要转化成.php文件--(其实除了用php,html都有自带的引入方法)2.html转化为php文件很简单,直接改一下后缀名就可以了--(如:index.ht ...

  8. Eclipse设置每行代码的长度

    打开 Window -> preferences -> java -> code style -> formatter -> edit -> line wrappi ...

  9. 同域内的两台电脑,一台访问另一台上搭建的IIS站点无法访问解决方法

    需要在搭建IIS站点的机器上,打开[高级安全Windows防火墙],新建[入站规则],添加外部允许访问的端口号即可.

  10. Helvetic Coding Contest 2016 online mirror F1

    Description Heidi has finally found the mythical Tree of Life – a legendary combinatorial structure ...