POJ1769(线段树+DP)
题意 : 给定一个区间长度 n ,接下来给出 m 个子区间,要求最少选出多少个区间才能使得 1~n 这个区间被所选的所有子区间覆盖
分析:
首先是动态规划,dp[i]表示把最大值从1位置搞到第i个小装置结尾最少需要多少个小装置,这样的话,从小到大遍历所有装置,每次查询当前装置之前的装置区间和当前装置相交的装置,更新dp就可以了。
那么问题就来了,装置有m个,这样O(m^2)的算法绝壁TLE。
用线段树来维护区间最小dp值信息,每个点维护ll到rr范围内的dp最小是多少。没算完一个新的小装置只需把它的dp值插到树上就行了。
然后TLE了,这里有个小贪心,每次更新不需要更新区间信息,因为对每个区间,r点之前的信息对更新之后的装置dp没有贡献,因为要努力使最大值向右移,因此单点更新即可。
AC代码:
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 5e4 + ;
const int INF = 0x3f3f3f3f;
int minx[maxn<<];
int dp[maxn];
int L[], R[]; void PushUP(int rt) { minx[rt] = min(minx[rt<<], minx[rt<<|]); }
void build(int l,int r,int rt) {
if (l == r) {
minx[rt] = INF;
return ;
}
int m = (l+r)>>;
build(lson);
build(rson);
PushUP(rt);
}
void update(int p,int sc,int l,int r,int rt) {//单点更新,参数(更新点,更新值,总区间左端点,总区间右端点,根节点编号)
if (l == r) {
minx[rt] = sc;
return ;
}
int m =(l+r)>>;
if (p <= m) update(p , sc , lson);
else update(p , sc , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {//查询最大值的写法、最小值同理、求和区间写法在下面
if (L <= l && r <= R)
return minx[rt]; int m = (l + r) >> ;
int ret = INF;
if (L <= m) ret = min(ret , query(L , R , lson));
if (R > m) ret = min(ret , query(L , R , rson));
return ret;
} int main(void)
{
int m, n;
scanf("%d %d", &n, &m);
for(int i=; i<=m; i++)
scanf("%d %d", &L[i], &R[i]);
build(, n, );
for(int i=; i<=n; i++)
dp[i] = INF;
dp[] = ;
update(, , , n, );
for(int i=; i<=m; i++){
int val = query(L[i], R[i], , n, ) + ;
if(val < dp[R[i]]){
//printf("%d %d\n", L[i], R[i]);
update(R[i], val, , n, );
dp[R[i]] = val;
}
}
printf("%d\n", dp[n]); return ;
}
POJ1769(线段树+DP)的更多相关文章
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- lightoj1085 线段树+dp
//Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...
- [CF 474E] Pillars (线段树+dp)
题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...
- HDU-3872 Dragon Ball 线段树+DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3872 题意:有n个龙珠按顺序放在一列,每个龙珠有一个type和一个权值,要求你把这n个龙珠分成k个段, ...
- HDU4521+线段树+dp
题意:在一个序列中找出最长的某个序列.找出的序列满足题中的条件. 关键:对于 第 i 个位置上的数,要知道与之相隔至少d的位置上的数的大小.可以利用线段树进行统计,查询.更新的时候利用dp的思想. / ...
- Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP
题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...
- Special Subsequence(离散化线段树+dp)
Special Subsequence Time Limit: 5 Seconds Memory Limit: 32768 KB There a sequence S with n inte ...
- hdu 4117 GRE Words (ac自动机 线段树 dp)
参考:http://blog.csdn.net/no__stop/article/details/12287843 此题利用了ac自动机fail树的性质,fail指针建立为树,表示父节点是孩子节点的后 ...
随机推荐
- eclipse中安装git插件
1 安装及配置git插件,问度娘即可 点击前往 2 eclipse 中怎么同步到 本地git仓库 和 码云远程仓库 点击前往
- IFC—IfcProduct实体继承框架
- opencv3.2 编译安装说明
Create a temporary directory, which we denote as <cmake_binary_dir>, where you want to put the ...
- scala中同步块
private def initializeIfNecessary() { if (!Logging.initialized) { Logging.initLock.synchronized { if ...
- Samy Kamka、吴石黑客信息
Samy Kamka 10年前他就曾成功利用AJAX蠕虫攻击了当时最火的社交网站MySpace.com,2009年的Twitter蠕虫事件和2011年新浪微博蠕虫事件都沿袭了他当时的方法. 2005年 ...
- 事件Event 介绍总结
最近在总结一些基础的东西,主要是学起来很难懂,但是在日常又有可能会经常用到的东西.前面介绍了 C# 的 AutoResetEvent的使用介绍, 这次介绍事件(event). 事件(event),对于 ...
- java java 内部类
java 内部类 一.java内部类: java内部类分为: 成员内部类.静态嵌套类.方法内部类.匿名内部类 . 内部类的共性: (1).内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.c ...
- 从零开始安装 Ambari (4) -- 通过 Ambari 部署 hadoop 集群
1. 打开 http://192.168.242.181:8080 登陆的用户名/密码是 : admin/admin 2. 点击 “LAUNCH INSTALL WIZARD”,开始创建一个集群 3 ...
- numpy中argsort函数用法
在Python中使用help帮助 >>> import numpy >>> help(numpy.argsort) Help on function argsort ...
- 【bzoj1853】: [Scoi2010]幸运数字 数论-容斥原理
[bzoj1853]: [Scoi2010]幸运数字 预处理出所有幸运数字然后容斥原理 但是幸运数字是2logn个数的 直接搞会炸 所以把成倍数的处理掉 然后发现还是会T 所以数字要从大到小处理会快很 ...