题目:

支持两种操作:

  1. 合并两点所在的联通块
  2. 查询某点所在联通块内权值第k小.

题解

平衡树启发式合并随便搞一搞就好了。

我写了一个线段树合并

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 100010;
struct Node{
Node *ch[2];
int siz,id;
void update(){
siz = ch[0]->siz + ch[1]->siz;
}
}*null,mem[maxn*30],*root[maxn],*it;
inline void init(){
it = mem;null = it++;
null->ch[0] = null->ch[1] = null;
null->siz = 0;
}
inline Node* newNode(){
Node *p = it++;p->ch[0] = p->ch[1] = null;
p->siz = 0;return p;
}
inline void insert(Node* &p,int l,int r,int pos,int id){
if(p == null) p = newNode();
if(l == r){
p->siz ++ ;
p->id = id;
return ;
}
int mid = l+r >> 1;
if(pos <= mid) insert(p->ch[0],l,mid,pos,id);
else insert(p->ch[1],mid+1,r,pos,id);
p->update();return ;
}
inline Node* Union(Node *x,Node *y){
if(x == null) return y;
if(y == null) return x;
x->ch[0] = Union(x->ch[0],y->ch[0]);
x->ch[1] = Union(x->ch[1],y->ch[1]);
x->update();return x;
}
int n;
inline int query(Node *p,int k){
if(k < 1 || k > p->siz) return -1;
int l = 1,r = n;
while(1){
if(l == r) return p->id;
int mid = l+r >> 1;
if(p->ch[0]->siz >= k){
p = p->ch[0];
r = mid;
}else{
k -= p->ch[0]->siz;
p = p->ch[1];
l = mid+1;
}
}
}
int fa[maxn];
inline int find(int x){
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int main(){
init();int m;read(n);read(m);
for(int i=1;i<=n;++i) root[i] = null,fa[i] = i;
for(int i=1,x;i<=n;++i){
read(x);
insert(root[i],1,n,x,i);
}
for(int i=1,u,v;i<=m;++i){
read(u);read(v);
int x = find(u);
int y = find(v);
if(x == y) continue;
fa[x] = y;
root[y] = Union(root[x],root[y]);
}
int q;read(q);
char ch;
int x,k,u,v;
while(q--){
while(ch=getchar(),ch<'!');
if(ch == 'Q'){
read(x);read(k);
int fx = find(x);
printf("%d\n",query(root[fx],k));
}else if(ch == 'B'){
read(u);read(v);
int x = find(u);
int y = find(v);
if(x == y) continue;
fa[x] = y;
root[y] = Union(root[x],root[y]);
}
}
return 0;
}

bzoj 2733 永无乡 线段树的更多相关文章

  1. bzoj 2733 永无乡 - 并查集 - 线段树

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  2. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

  3. Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...

  4. bzoj 2733 : [HNOI2012]永无乡 (线段树合并)

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

  5. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  6. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

  7. [HNOI2012]永无乡 线段树合并

    [HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...

  8. 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)

    题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...

  9. 【bzoj2733】[HNOI2012]永无乡 线段树合并

    Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...

随机推荐

  1. 初步认识Spring MVC框架

    Spring MVC 框架和Struts2等一样属于MVC框架,用于处理页面和后台的交互,据说它的效率要高于Struts2.下面县先说一下Spring MVC的结构,Spring MVC主要由Disp ...

  2. 反射机制,jvm,class类型

    [说明]这是上午完成的内容或者说是接触到的知识点,包括servlet简单的数据库连接,表格的显示需要用到的插件jstl,还有最最多的java反射原理的讲解 1)数据库的设计 2)编程中用到的知识点 3 ...

  3. java排序(整理)

    冒泡排序(面试都要问的算法) 一.基本思想:每次比较相邻的两个 元素,按需调整顺序   二.题目:要求将 12 35 99 18 76 这 5 个数进行从大到小排序   三.思路: (1)先比较第 1 ...

  4. ArcGIS Scalebar 比例尺

    说明.这篇博文的示例代码 地图充满body arcgis api for javascript iis怎么离线部署 请参考我前面的博文 1.运行效果 3.HTML代码 <!DOCTYPE htm ...

  5. 2017-2018-1 20179209《Linux内核原理与分析》第八周作业

    Linux内核如何装载和启动一个可执行程 一.实验 1.1理解编译链接的过程和ELF可执行文件格式. 1.1.1编译链接过程 能用图说明的问题,就少用文字描述: 1.1.2ELF可执行文件 ELF可执 ...

  6. 换教室(期望+DP)

    换教室(期望+DP) \(dp(i,j,1/0)\)表示第\(i\)节课,申请了\(j\)次调换,这节课\(1/0\)调换. 换教室 转移的时候考虑: 上次没申请 这次也没申请 加上\(dis(fr[ ...

  7. 我的Android进阶之旅------>如何获取系统中定义了那些权限

    在Window控制台中输入如下命令可以看到Android系统中列出的所有权限(如果自定义权限注册成功,在这里也会找到这些自定义的权限) adb shell pm list permissions C: ...

  8. Apache Shiro 使用手册(三)Shiro 授权(转发:http://kdboy.iteye.com/blog/1155450)

    授权即访问控制,它将判断用户在应用程序中对资源是否拥有相应的访问权限. 如,判断一个用户有查看页面的权限,编辑数据的权限,拥有某一按钮的权限,以及是否拥有打印的权限等等. 一.授权的三要素 授权有着三 ...

  9. 事务的四大特性ACID

    ACID是指数据库事务的四大特性,是由Jim Gray在19世纪70年代后期提出的概念,1983年Andreas Reuter and Theo Härder创造了ACID这个缩略语用来描述这四大特性 ...

  10. 视图的创建与使用 Sql Server View

    创建教材的三个数据表Student.Course及SC. create database S_T Use S_T CREATE TABLE Student (Sno CHAR(9), Sname CH ...