【关于java多线程和socket通信的一些记录】---高并发/高负载/高可用/重入锁
多线程:提高cpu的使用效率,多线程是指在同一程序中有多个顺序流在执行。
进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1--n个线程。
线程:同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换开销小。
线程和进程一样分为五个阶段:创建、就绪、运行、阻塞、终止。
多进程是指操作系统能同时运行多个任务(程序)。
状态:新建----就绪----运行----阻塞----消亡。进程和线程同样分为这几种状态。
java中实现多线程的两种方式:
1:继承Thread类来扩展:
start()方法的调用后并不是立即执行多线程代码,而是使得该线程变为可运行态(Runnable),什么时候运行是由操作系统决定的。从程序运行的结果可以发现,多线程程序是乱序执行。因此,只有乱序执行的代码才有必要设计为多线程。
2:实现Runnable接口来重写run()方法来实现:
通过实现Runnable接口的类,该类就有了多线程类的特征。run()方法是多线程程序的一个约定。所有的多线程代码都在run方法里面。Thread类实际上也是实现了Runnable接口的类。
关于两者的区别就是java的单继承和多实现的取舍问题了。如果一个类继承Thread,则不适合资源共享。但是如果实现了Runable接口的话,则很容易的实现资源共享。
实现Runnable接口比继承Thread类所具有的优势:
1):适合多个相同的程序代码的线程去处理同一个资源
2):可以避免java中的单继承的限制
3):增加程序的健壮性,代码可以被多个线程共享,代码和数据独立
线程的调度
常用函数说明
①sleep(long millis): 在指定的毫秒数内让当前正在执行的线程休眠(暂停执行)
②join():指等待t线程终止。
使用方式。
join是Thread类的一个方法,启动线程后直接调用,即join()的作用是:“等待该线程终止”,这里需要理解的就是该线程是指的主线程等待子线程的终止。也就是在子线程调用了join()方法后面的代码,只有等到子线程结束了才能执行。
- Thread t = new AThread(); t.start(); t.join();
为什么要用join()方法
在很多情况下,主线程生成并起动了子线程,如果子线程里要进行大量的耗时的运算,主线程往往将于子线程之前结束,但是如果主线程处理完其他的事务后,需要用到子线程的处理结果,也就是主线程需要等待子线程执行完成之后再结束,这个时候就要用到join()方法了。
不加join。
- /**
- *@functon 多线程学习,join
- *@author 林炳文
- *@time 2015.3.9
- */
- package com.multithread.join;
- class Thread1 extends Thread{
- private String name;
- public Thread1(String name) {
- super(name);
- this.name=name;
- }
- public void run() {
- System.out.println(Thread.currentThread().getName() + " 线程运行开始!");
- for (int i = 0; i < 5; i++) {
- System.out.println("子线程"+name + "运行 : " + i);
- try {
- sleep((int) Math.random() * 10);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- System.out.println(Thread.currentThread().getName() + " 线程运行结束!");
- }
- }
- public class Main {
- public static void main(String[] args) {
- System.out.println(Thread.currentThread().getName()+"主线程运行开始!");
- Thread1 mTh1=new Thread1("A");
- Thread1 mTh2=new Thread1("B");
- mTh1.start();
- mTh2.start();
- System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");
- }
- }
输出结果:
main主线程运行开始!
main主线程运行结束!
B 线程运行开始!
子线程B运行 : 0
A 线程运行开始!
子线程A运行 : 0
子线程B运行 : 1
子线程A运行 : 1
子线程A运行 : 2
子线程A运行 : 3
子线程A运行 : 4
A 线程运行结束!
子线程B运行 : 2
子线程B运行 : 3
子线程B运行 : 4
B 线程运行结束!
发现主线程比子线程早结束
加join
- public class Main {
- public static void main(String[] args) {
- System.out.println(Thread.currentThread().getName()+"主线程运行开始!");
- Thread1 mTh1=new Thread1("A");
- Thread1 mTh2=new Thread1("B");
- mTh1.start();
- mTh2.start();
- try {
- mTh1.join();
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- try {
- mTh2.join();
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");
- }
- }
运行结果:
main主线程运行开始!
A 线程运行开始!
子线程A运行 : 0
B 线程运行开始!
子线程B运行 : 0
子线程A运行 : 1
子线程B运行 : 1
子线程A运行 : 2
子线程B运行 : 2
子线程A运行 : 3
子线程B运行 : 3
子线程A运行 : 4
子线程B运行 : 4
A 线程运行结束!
主线程一定会等子线程都结束了才结束
③yield():暂停当前正在执行的线程对象,并执行其他线程。
- /**
- *@functon 多线程学习 yield
- *@author 林炳文
- *@time 2015.3.9
- */
- package com.multithread.yield;
- class ThreadYield extends Thread{
- public ThreadYield(String name) {
- super(name);
- }
- @Override
- public void run() {
- for (int i = 1; i <= 50; i++) {
- System.out.println("" + this.getName() + "-----" + i);
- // 当i为30时,该线程就会把CPU时间让掉,让其他或者自己的线程执行(也就是谁先抢到谁执行)
- if (i ==30) {
- this.yield();
- }
- }
- }
- }
- public class Main {
- public static void main(String[] args) {
- ThreadYield yt1 = new ThreadYield("张三");
- ThreadYield yt2 = new ThreadYield("李四");
- yt1.start();
- yt2.start();
- }
- }
运行结果:
第一种情况:李四(线程)当执行到30时会CPU时间让掉,这时张三(线程)抢到CPU时间并执行。
第二种情况:李四(线程)当执行到30时会CPU时间让掉,这时李四(线程)抢到CPU时间并执行。
sleep()和yield()的区别
sleep()和yield()的区别):sleep()使当前线程进入停滞状态,所以执行sleep()的线程在指定的时间内肯定不会被执行;yield()只是使当前线程重新回到可执行状态,所以执行yield()的线程有可能在进入到可执行状态后马上又被执行。
sleep 方法使当前运行中的线程睡眼一段时间,进入不可运行状态,这段时间的长短是由程序设定的,yield 方法使当前线程让出 CPU 占有权,但让出的时间是不可设定的。实际上,yield()方法对应了如下操作:先检测当前是否有相同优先级的线程处于同可运行状态,如有,则把 CPU 的占有权交给此线程,否则,继续运行原来的线程。所以yield()方法称为“退让”,它把运行机会让给了同等优先级的其他线程
另外,sleep 方法允许较低优先级的线程获得运行机会,但 yield() 方法执行时,当前线程仍处在可运行状态,所以,不可能让出较低优先级的线程些时获得 CPU 占有权。在一个运行系统中,如果较高优先级的线程没有调用 sleep 方法,又没有受到 I\O 阻塞,那么,较低优先级线程只能等待所有较高优先级的线程运行结束,才有机会运行。
④setPriority(): 更改线程的优先级。
MIN_PRIORITY = 1
NORM_PRIORITY = 5
MAX_PRIORITY = 10
用法:
Thread4 t1 = new Thread4("t1");
Thread4 t2 = new Thread4("t2");
t1.setPriority(Thread.MAX_PRIORITY);
t2.setPriority(Thread.MIN_PRIORITY);
⑤interrupt():中断某个线程,这种结束方式比较粗暴,如果t线程打开了某个资源还没来得及关闭也就是run方法还没有执行完就强制结束线程,会导致资源无法关闭
要想结束进程最好的办法就是用sleep()函数的例子程序里那样,在线程类里面用以个boolean型变量来控制run()方法什么时候结束,run()方法一结束,该线程也就结束了。
⑥wait()
Obj.wait(),与Obj.notify()必须要与synchronized(Obj)一起使用,也就是wait,与notify是针对已经获取了Obj锁进行操作,从语法角度来说就是Obj.wait(),Obj.notify必须在synchronized(Obj){...}语句块内。从功能上来说wait就是说线程在获取对象锁后,主动释放对象锁,同时本线程休眠。直到有其它线程调用对象的notify()唤醒该线程,才能继续获取对象锁,并继续执行。相应的notify()就是对对象锁的唤醒操作。但有一点需要注意的是notify()调用后,并不是马上就释放对象锁的,而是在相应的synchronized(){}语句块执行结束,自动释放锁后,JVM会在wait()对象锁的线程中随机选取一线程,赋予其对象锁,唤醒线程,继续执行。这样就提供了在线程间同步、唤醒的操作。Thread.sleep()与Object.wait()二者都可以暂停当前线程,释放CPU控制权,主要的区别在于Object.wait()在释放CPU同时,释放了对象锁的控制。
单单在概念上理解清楚了还不够,需要在实际的例子中进行测试才能更好的理解。对Object.wait(),Object.notify()的应用最经典的例子,应该是三线程打印ABC的问题了吧,这是一道比较经典的面试题,题目要求如下:
建立三个线程,A线程打印10次A,B线程打印10次B,C线程打印10次C,要求线程同时运行,交替打印10次ABC。这个问题用Object的wait(),notify()就可以很方便的解决。代码如下:
- /**
- * wait用法
- * @author DreamSea
- * @time 2015.3.9
- */
- package com.multithread.wait;
- public class MyThreadPrinter2 implements Runnable {
- private String name;
- private Object prev;
- private Object self;
- private MyThreadPrinter2(String name, Object prev, Object self) {
- this.name = name;
- this.prev = prev;
- this.self = self;
- }
- @Override
- public void run() {
- int count = 10;
- while (count > 0) {
- synchronized (prev) {
- synchronized (self) {
- System.out.print(name);
- count--;
- self.notify();
- }
- try {
- prev.wait();
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
- }
- public static void main(String[] args) throws Exception {
- Object a = new Object();
- Object b = new Object();
- Object c = new Object();
- MyThreadPrinter2 pa = new MyThreadPrinter2("A", c, a);
- MyThreadPrinter2 pb = new MyThreadPrinter2("B", a, b);
- MyThreadPrinter2 pc = new MyThreadPrinter2("C", b, c);
- new Thread(pa).start();
- Thread.sleep(100); //确保按顺序A、B、C执行
- new Thread(pb).start();
- Thread.sleep(100);
- new Thread(pc).start();
- Thread.sleep(100);
- }
- }
输出结果:
ABCABCABCABCABCABCABCABCABCABC
先来解释一下其整体思路,从大的方向上来讲,该问题为三线程间的同步唤醒操作,主要的目的就是ThreadA->ThreadB->ThreadC->ThreadA循环执行三个线程。为了控制线程执行的顺序,那么就必须要确定唤醒、等待的顺序,所以每一个线程必须同时持有两个对象锁,才能继续执行。一个对象锁是prev,就是前一个线程所持有的对象锁。还有一个就是自身对象锁。主要的思想就是,为了控制执行的顺序,必须要先持有prev锁,也就前一个线程要释放自身对象锁,再去申请自身对象锁,两者兼备时打印,之后首先调用self.notify()释放自身对象锁,唤醒下一个等待线程,再调用prev.wait()释放prev对象锁,终止当前线程,等待循环结束后再次被唤醒。运行上述代码,可以发现三个线程循环打印ABC,共10次。程序运行的主要过程就是A线程最先运行,持有C,A对象锁,后释放A,C锁,唤醒B。线程B等待A锁,再申请B锁,后打印B,再释放B,A锁,唤醒C,线程C等待B锁,再申请C锁,后打印C,再释放C,B锁,唤醒A。看起来似乎没什么问题,但如果你仔细想一下,就会发现有问题,就是初始条件,三个线程按照A,B,C的顺序来启动,按照前面的思考,A唤醒B,B唤醒C,C再唤醒A。但是这种假设依赖于JVM中线程调度、执行的顺序。
wait和sleep区别
共同点:
1. 他们都是在多线程的环境下,都可以在程序的调用处阻塞指定的毫秒数,并返回。
2. wait()和sleep()都可以通过interrupt()方法 打断线程的暂停状态 ,从而使线程立刻抛出InterruptedException。
如果线程A希望立即结束线程B,则可以对线程B对应的Thread实例调用interrupt方法。如果此刻线程B正在wait/sleep /join,则线程B会立刻抛出InterruptedException,在catch() {} 中直接return即可安全地结束线程。
需要注意的是,InterruptedException是线程自己从内部抛出的,并不是interrupt()方法抛出的。对某一线程调用 interrupt()时,如果该线程正在执行普通的代码,那么该线程根本就不会抛出InterruptedException。但是,一旦该线程进入到 wait()/sleep()/join()后,就会立刻抛出InterruptedException 。
不同点:
1. Thread类的方法:sleep(),yield()等
Object的方法:wait()和notify()等
2. 每个对象都有一个锁来控制同步访问。Synchronized关键字可以和对象的锁交互,来实现线程的同步。
sleep方法没有释放锁,而wait方法释放了锁,使得其他线程可以使用同步控制块或者方法。
3. wait,notify和notifyAll只能在同步控制方法或者同步控制块里面使用,而sleep可以在任何地方使用
4. sleep必须捕获异常,而wait,notify和notifyAll不需要捕获异常
所以sleep()和wait()方法的最大区别是:
sleep()睡眠时,保持对象锁,仍然占有该锁;
而wait()睡眠时,释放对象锁。
但是wait()和sleep()都可以通过interrupt()方法打断线程的暂停状态,从而使线程立刻抛出InterruptedException(但不建议使用该方法)。
sleep()方法
sleep()使当前线程进入停滞状态(阻塞当前线程),让出CUP的使用、目的是不让当前线程独自霸占该进程所获的CPU资源,以留一定时间给其他线程执行的机会;
sleep()是Thread类的Static(静态)的方法;因此他不能改变对象的机锁,所以当在一个Synchronized块中调用Sleep()方法是,线程虽然休眠了,但是对象的机锁并木有被释放,其他线程无法访问这个对象(即使睡着也持有对象锁)。
在sleep()休眠时间期满后,该线程不一定会立即执行,这是因为其它线程可能正在运行而且没有被调度为放弃执行,除非此线程具有更高的优先级。
wait()方法
wait()方法是Object类里的方法;当一个线程执行到wait()方法时,它就进入到一个和该对象相关的等待池中,同时失去(释放)了对象的机锁(暂时失去机锁,wait(long timeout)超时时间到后还需要返还对象锁);其他线程可以访问;
wait()使用notify或者notifyAlll或者指定睡眠时间来唤醒当前等待池中的线程。
wiat()必须放在synchronized block中,否则会在program runtime时扔出”java.lang.IllegalMonitorStateException“异常。
常见线程名词解释
线程类的一些常用方法:
sleep(): 强迫一个线程睡眠N毫秒。
isAlive(): 判断一个线程是否存活。
join(): 等待线程终止。
activeCount(): 程序中活跃的线程数。
enumerate(): 枚举程序中的线程。
currentThread(): 得到当前线程。
isDaemon(): 一个线程是否为守护线程。
setDaemon(): 设置一个线程为守护线程。(用户线程和守护线程的区别在于,是否等待主线程依赖于主线程结束而结束)
setName(): 为线程设置一个名称。
wait(): 强迫一个线程等待。
notify(): 通知一个线程继续运行。
setPriority(): 设置一个线程的优先级。
线程同步
1、synchronized关键字的作用域有二种:
1)是某个对象实例内,synchronized aMethod(){}可以防止多个线程同时访问这个对象的synchronized方法(如果一个对象有多个synchronized方法,只要一个线程访问了其中的一个synchronized方法,其它线程不能同时访问这个对象中任何一个synchronized方法)。这时,不同的对象实例的synchronized方法是不相干扰的。也就是说,其它线程照样可以同时访问相同类的另一个对象实例中的synchronized方法;
2)是某个类的范围,synchronized static aStaticMethod{}防止多个线程同时访问这个类中的synchronized static 方法。它可以对类的所有对象实例起作用。
2、除了方法前用synchronized关键字,synchronized关键字还可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。用法是: synchronized(this){/*区块*/},它的作用域是当前对象;
3、synchronized关键字是不能继承的,也就是说,基类的方法synchronized f(){} 在继承类中并不自动是synchronized f(){},而是变成了f(){}。继承类需要你显式的指定它的某个方法为synchronized方法;
Java对多线程的支持与同步机制深受大家的喜爱,似乎看起来使用了synchronized关键字就可以轻松地解决多线程共享数据同步问题。到底如何?――还得对synchronized关键字的作用进行深入了解才可定论。
总的说来,synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分类,synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。
在进一步阐述之前,我们需要明确几点:
A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象,而不是把一段代码或函数当作锁――而且同步方法很可能还会被其他线程的对象访问。
B.每个对象只有一个锁(lock)与之相关联。
C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。
接着来讨论synchronized用到不同地方对代码产生的影响:
假设P1、P2是同一个类的不同对象,这个类中定义了以下几种情况的同步块或同步方法,P1、P2就都可以调用它们。
1. 把synchronized当作函数修饰符时,示例代码如下:
Public synchronized void methodAAA()
{
//….
}
这也就是同步方法,那这时synchronized锁定的是哪个对象呢?它锁定的是调用这个同步方法对象。也就是说,当一个对象P1在不同的线程中执行这个同步方法时,它们之间会形成互斥,达到同步的效果。但是这个对象所属的Class所产生的另一对象P2却可以任意调用这个被加了synchronized关键字的方法。
上边的示例代码等同于如下代码:
public void methodAAA()
{
synchronized (this) // (1)
{
//…..
}
}
(1)处的this指的是什么呢?它指的就是调用这个方法的对象,如P1。可见同步方法实质是将synchronized作用于object reference。――那个拿到了P1对象锁的线程,才可以调用P1的同步方法,而对P2而言,P1这个锁与它毫不相干,程序也可能在这种情形下摆脱同步机制的控制,造成数据混乱:(
2.同步块,示例代码如下:
public void method3(SomeObject so)
{
synchronized(so)
{
//…..
}
}
这时,锁就是so这个对象,谁拿到这个锁谁就可以运行它所控制的那段代码。当有一个明确的对象作为锁时,就可以这样写程序,但当没有明确的对象作为锁,只是想让一段代码同步时,可以创建一个特殊的instance变量(它得是一个对象)来充当锁:
class Foo implements Runnable
{
private byte[] lock = new byte[0]; // 特殊的instance变量
Public void methodA()
{
synchronized(lock) { //… }
}
//…..
}
注:零长度的byte数组对象创建起来将比任何对象都经济――查看编译后的字节码:生成零长度的byte[]对象只需3条操作码,而Object lock = new Object()则需要7行操作码。
3.将synchronized作用于static 函数,示例代码如下:
Class Foo
{
public synchronized static void methodAAA() // 同步的static 函数
{
//….
}
public void methodBBB()
{
synchronized(Foo.class) // class literal(类名称字面常量)
}
}
代码中的methodBBB()方法是把class literal作为锁的情况,它和同步的static函数产生的效果是一样的,取得的锁很特别,是当前调用这个方法的对象所属的类(Class,而不再是由这个Class产生的某个具体对象了)。
记得在《Effective Java》一书中看到过将 Foo.class和 P1.getClass()用于作同步锁还不一样,不能用P1.getClass()来达到锁这个Class的目的。P1指的是由Foo类产生的对象。
可以推断:如果一个类中定义了一个synchronized的static函数A,也定义了一个synchronized 的instance函数B,那么这个类的同一对象Obj在多线程中分别访问A和B两个方法时,不会构成同步,因为它们的锁都不一样。A方法的锁是Obj这个对象,而B的锁是Obj所属的那个Class。
线程数据传递
在传统的同步开发模式下,当我们调用一个函数时,通过这个函数的参数将数据传入,并通过这个函数的返回值来返回最终的计算结果。但在多线程的异步开发模式下,数据的传递和返回和同步开发模式有很大的区别。由于线程的运行和结束是不可预料的,因此,在传递和返回数据时就无法象函数一样通过函数参数和return语句来返回数据。
1、通过构造方法传递数据
在创建线程时,必须要建立一个Thread类的或其子类的实例。因此,我们不难想到在调用start方法之前通过线程类的构造方法将数据传入线程。并将传入的数据使用类变量保存起来,以便线程使用(其实就是在run方法中使用)。下面的代码演示了如何通过构造方法来传递数据:
- package mythread;
- public class MyThread1 extends Thread
- {
- private String name;
- public MyThread1(String name)
- {
- this.name = name;
- }
- public void run()
- {
- System.out.println("hello " + name);
- }
- public static void main(String[] args)
- {
- Thread thread = new MyThread1("world");
- thread.start();
- }
- }
由于这种方法是在创建线程对象的同时传递数据的,因此,在线程运行之前这些数据就就已经到位了,这样就不会造成数据在线程运行后才传入的现象。如果要传递更复杂的数据,可以使用集合、类等数据结构。使用构造方法来传递数据虽然比较安全,但如果要传递的数据比较多时,就会造成很多不便。由于Java没有默认参数,要想实现类似默认参数的效果,就得使用重载,这样不但使构造方法本身过于复杂,又会使构造方法在数量上大增。因此,要想避免这种情况,就得通过类方法或类变量来传递数据。
2、通过变量和方法传递数据
向对象中传入数据一般有两次机会,第一次机会是在建立对象时通过构造方法将数据传入,另外一次机会就是在类中定义一系列的public的方法或变量(也可称之为字段)。然后在建立完对象后,通过对象实例逐个赋值。下面的代码是对MyThread1类的改版,使用了一个setName方法来设置 name变量:
- package mythread;
- public class MyThread2 implements Runnable
- {
- private String name;
- public void setName(String name)
- {
- this.name = name;
- }
- public void run()
- {
- System.out.println("hello " + name);
- }
- public static void main(String[] args)
- {
- MyThread2 myThread = new MyThread2();
- myThread.setName("world");
- Thread thread = new Thread(myThread);
- thread.start();
- }
- }
3、通过回调函数传递数据
上面讨论的两种向线程中传递数据的方法是最常用的。但这两种方法都是main方法中主动将数据传入线程类的。这对于线程来说,是被动接收这些数据的。然而,在有些应用中需要在线程运行的过程中动态地获取数据,如在下面代码的run方法中产生了3个随机数,然后通过Work类的process方法求这三个随机数的和,并通过Data类的value将结果返回。从这个例子可以看出,在返回value之前,必须要得到三个随机数。也就是说,这个 value是无法事先就传入线程类的。
- package mythread;
- class Data
- {
- public int value = 0;
- }
- class Work
- {
- public void process(Data data, Integer numbers)
- {
- for (int n : numbers)
- {
- data.value += n;
- }
- }
- }
- public class MyThread3 extends Thread
- {
- private Work work;
- public MyThread3(Work work)
- {
- this.work = work;
- }
- public void run()
- {
- java.util.Random random = new java.util.Random();
- Data data = new Data();
- int n1 = random.nextInt(1000);
- int n2 = random.nextInt(2000);
- int n3 = random.nextInt(3000);
- work.process(data, n1, n2, n3); // 使用回调函数
- System.out.println(String.valueOf(n1) + "+" + String.valueOf(n2) + "+"
- + String.valueOf(n3) + "=" + data.value);
- }
- public static void main(String[] args)
- {
- Thread thread = new MyThread3(new Work());
- thread.start();
- }
- }
【关于java多线程和socket通信的一些记录】---高并发/高负载/高可用/重入锁的更多相关文章
- 深入理解java:2.3.2. 并发编程concurrent包 之重入锁/读写锁/条件锁
重入锁 Java中的重入锁(即ReentrantLock) 与JVM内置锁(即synchronized)一样,是一种排它锁. ReentrantLock提供了多样化的同步,比如有时间限制的同步(定 ...
- Java并发(九):重入锁 ReentrantLock
先做总结: 1.为什么要用ReentrantLock? (1)ReentrantLock与synchronized具有相同的功能和内存语义: (2)synchronized是重量级锁,性能不好.Ree ...
- Java 重入锁和读写锁
本文部分摘自<Java 并发编程的艺术> 重入锁 重入锁 ReentrantLock,顾名思义,就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁.除此之外,该锁还支持获取锁时 ...
- 并发编程~~~多线程~~~计算密集型 / IO密集型的效率, 多线程实现socket通信
一 验证计算密集型 / IO密集型的效率 IO密集型: IO密集型: 单个进程的多线程的并发效率高. 计算密集型: 计算密集型: 多进程的并发并行效率高. 二 多线程实现socket通信 服务器端: ...
- day36——死锁、递归锁、信号量、GIL、多线程实现socket通信、线程池和进程池
day36 死锁现象与递归锁 死锁现象 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这 ...
- Java多线程编程核心技术(二)对象及变量的并发访问
本文主要介绍Java多线程中的同步,也就是如何在Java语言中写出线程安全的程序,如何在Java语言中解决非线程安全的相关问题.阅读本文应该着重掌握如下技术点: synchronized对象监视器为O ...
- 多线程通信的两种方式? (可重入锁ReentrantLock和Object)
(一)Java中线程协作的最常见的两种方式: (1)利用Object的wait().notify()和notifyAll()方法及synchronized (2)使用Condition.Reentra ...
- “全栈2019”Java多线程第二十九章:可重入锁与不可重入锁详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...
- Java多线程——深入重入锁ReentrantLock
简述 ReentrantLock 是一个可重入的互斥(/独占)锁,又称为“独占锁”. ReentrantLock通过自定义队列同步器(AQS-AbstractQueuedSychronized,是实现 ...
随机推荐
- delphi各个版本编译开关值
delphi各个版本编译开关值 {$IFDEF VER80} - Delphi 1{$IFDEF VER90} - Delphi 2{$IFDEF VER100} - Delphi 3{$IFDE ...
- HDU 4417 Super Mario(2012杭州网络赛 H 离线线段树)
突然想到的节约时间的方法,感觉6翻了 给你n个数字,接着m个询问.每次问你一段区间内不大于某个数字(不一定是给你的数字)的个数 直接线段树没法做,因为每次给你的数字不一样,父节点无法统计.但是离线一 ...
- 在元素标签中写简单的js函数
如: <img id="verifyImg" class="passcode" src="__URL__/verify_c" onCl ...
- Django-01
知识预览 Django基本命令 二 路由配置系统(URLconf) 三 编写视图 四 Template 五 数据库与ORM admin的配置 一 什么是web框架? 框架,即framework,特指为 ...
- appium-环境搭建(一)
adb命令 adb的全称为Android Debug Bridge,就是起到调试桥的作用.借助adb工具,我们可以管理设备或者手机模拟器的状态.还可以进行很多手机操作,如安装软件\系统升级\运行she ...
- D. String Game 二分加字符串匹配
题目链接 题目大意:给出字符串str1,再第二行给出字符串str2,第三行给出删除str1中的字符的顺序,用数组a[]存,问最多按第三行的顺序删除str1中的字符剩下的字符串中str2 我们定义l为a ...
- rust ownership 系统
### 对象销毁规则 未被使用的函数返回值 被let绑定的值, 在函数末尾销毁,除非被moved ``` let v = obj::new("a"); other_fun(v); ...
- 【遍历二叉树】10判断二叉树是否平衡【Balanced Binary Tree】
平衡的二叉树的定义都是递归的定义,所以,用递归来解决问题,还是挺容易的额. 本质上是递归的遍历二叉树. ++++++++++++++++++++++++++++++++++++++++++++++++ ...
- C语言小程序(三)、判断两个日期之差
输入两个日期,计算之间相差多少天. 用了两种方法实现,第二种利用结构体,代码比较清晰,其余的都一样. 1.普通的写法 #include <stdio.h> int leapyear(int ...
- Angular Chart 使用说明(基于angular工程)
Angular Chart是基于Chart.js的angular组件,引入项目后直接操作数据即可. 引用方法: 分别将Chart.js.angular-chart.js.angular-char ...