RabbitMQ三----'任务分发 '
当有Consumer需要大量的运算时,RabbitMQ Server需要一定的分发机制来balance每个Consumer的load。试想一下,对于web application来说,在一个很多的HTTP request里是没有时间来处理复杂的运算的,只能通过后台的一些工作线程来完成。接下来我们分布讲解。
应用场景就是RabbitMQ Server会将queue的Message分发给不同的Consumer以处理计算密集型的任务:
1. 准备
在上一篇文章中,我们简单在Message中包含了一个字符串"Hello World"。现在为了是Consumer做的是计算密集型的工作,那就不能简单的字符串了。在现实应用中,Consumer有可能做的是一个图片的resize,或者是pdf文件的渲染或者内容提取。但是作为Demo,还是用字符串模拟吧:通过字符串中的.的数量来决定计算的复杂度,每个.都会消耗1s,即sleep(1)。
还是复用上篇文章中的code,根据“计算密集型”做一下简单的修改,为了辨别,我们把send.py 的名字换成new_task.py
import sys message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',
routing_key='hello',
body=message)
print " [x] Sent %r" % (message,)
同样的道理,把receive.py的名字换成worker.py,并且根据Message中的.的数量进行计算密集型模拟:
import time def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)
time.sleep( body.count('.') )
print " [x] Done"
2. Round-robin dispatching 循环分发
RabbitMQ的分发机制非常适合扩展,而且它是专门为并发程序设计的。如果现在load加重,那么只需要创建更多的Consumer来进行任务处理即可。当然了,对于负载还要加大怎么办?我没有遇到过这种情况,那就可以创建多个virtual Host,细化不同的通信类别了。
首先开启两个Consumer,即运行两个worker.py。
Console1:
shell1$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
Consule2:
shell2$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
Producer new_task.py要Publish Message了:
shell3$ python new_task.py First message.
shell3$ python new_task.py Second message..
shell3$ python new_task.py Third message...
shell3$ python new_task.py Fourth message....
shell3$ python new_task.py Fifth message.....
注意一下:.代表的sleep(1)。接着开一下Consumer worker.py收到了什么:
Console1:
shell1$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
[x] Received 'First message.'
[x] Received 'Third message...'
[x] Received 'Fifth message.....'
Console2:
shell2$ python worker.py
[*] Waiting for messages. To exit press CTRL+C
[x] Received 'Second message..'
[x] Received 'Fourth message....'
默认情况下,RabbitMQ 会顺序的分发每个Message。当每个收到ack后,会将该Message删除,然后将下一个Message分发到下一个Consumer。这种分发方式叫做round-robin。这种分发还有问题,接着向下读吧。
3. Message acknowledgment 消息确认
每个Consumer可能需要一段时间才能处理完收到的数据。如果在这个过程中,Consumer出错了,异常退出了,而数据还没有处理完成,那么非常不幸,这段数据就丢失了。因为我们采用no-ack的方式进行确认,也就是说,每次Consumer接到数据后,而不管是否处理完成,RabbitMQ Server会立即把这个Message标记为完成,然后从queue中删除了。
如果一个Consumer异常退出了,它处理的数据能够被另外的Consumer处理,这样数据在这种情况下就不会丢失了(注意是这种情况下)。
为了保证数据不被丢失,RabbitMQ支持消息确认机制,即acknowledgments。为了保证数据能被正确处理而不仅仅是被Consumer收到,那么我们不能采用no-ack。而应该是在处理完数据后发送ack。
在处理数据后发送的ack,就是告诉RabbitMQ数据已经被接收,处理完成,RabbitMQ可以去安全的删除它了。
如果Consumer退出了但是没有发送ack,那么RabbitMQ就会把这个Message发送到下一个Consumer。这样就保证了在Consumer异常退出的情况下数据也不会丢失。
这里并没有用到超时机制。RabbitMQ仅仅通过Consumer的连接中断来确认该Message并没有被正确处理。也就是说,RabbitMQ给了Consumer足够长的时间来做数据处理。
默认情况下,消息确认是打开的(enabled)。在上篇文章中我们通过no_ack = True 关闭了ack。重新修改一下callback,以在消息处理完成后发送ack:
def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)
time.sleep( body.count('.') )
print " [x] Done"
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue='hello')
这样即使你通过Ctr-C中断了worker.py,那么Message也不会丢失了,它会被分发到下一个Consumer。
如果忘记了ack,那么后果很严重。当Consumer退出时,Message会重新分发。然后RabbitMQ会占用越来越多的内存,由于RabbitMQ会长时间运行,因此这个“内存泄漏”是致命的。去调试这种错误,可以通过一下命令打印un-acked Messages:
$ sudo rabbitmqctl list_queues name messages_ready messages_unacknowledged
Listing queues ...
hello 0 0
...done.
4. Message durability消息持久化
在上一节中我们知道了即使Consumer异常退出,Message也不会丢失。但是如果RabbitMQ Server退出呢?软件都有bug,即使RabbitMQ Server是完美毫无bug的(当然这是不可能的,是软件就有bug,没有bug的那不叫软件),它还是有可能退出的:被其它软件影响,或者系统重启了,系统panic了。。。
为了保证在RabbitMQ退出或者crash了数据仍没有丢失,需要将queue和Message都要持久化。
queue的持久化需要在声明时指定durable=True:
channel.queue_declare(queue='hello', durable=True)
上述语句执行不会有什么错误,但是确得不到我们想要的结果,原因就是RabbitMQ Server已经维护了一个叫hello的queue,那么上述执行不会有任何的作用,也就是hello的任何属性都不会被影响。这一点在上篇文章也讨论过
那么workaround也很简单,声明一个另外的名字的queue,比如名字定位task_queue:
channel.queue_declare(queue='task_queue', durable=True)
再次强调,Producer和Consumer都应该去创建这个queue,尽管只有一个地方的创建是真正起作用的:
接下来,需要持久化Message,即在Publish的时候指定一个properties,方式如下:
channel.basic_publish(exchange='',
routing_key="task_queue",
body=message,
properties=pika.BasicProperties(
delivery_mode = 2, # make message persistent
))
关于持久化的进一步讨论:
为了数据不丢失,我们采用了:
- 在数据处理结束后发送ack,这样RabbitMQ Server会认为Message Deliver 成功。
- 持久化queue,可以防止RabbitMQ Server 重启或者crash引起的数据丢失。
- 持久化Message,理由同上。
但是这样能保证数据100%不丢失吗?
答案是否定的。问题就在与RabbitMQ需要时间去把这些信息存到磁盘上,这个time window虽然短,但是它的确还是有。在这个时间窗口内如果数据没有保存,数据还会丢失。还有另一个原因就是RabbitMQ并不是为每个Message都做fsync:它可能仅仅是把它保存到Cache里,还没来得及保存到物理磁盘上。
因此这个持久化还是有问题。但是对于大多数应用来说,这已经足够了。当然为了保持一致性,你可以把每次的publish放到一个transaction中。这个transaction的实现需要user defined codes。
那么商业系统会做什么呢?一种可能的方案是在系统panic时或者异常重启时或者断电时,应该给各个应用留出时间去flash cache,保证每个应用都能exit gracefully。
5. Fair dispatch 公平分发
你可能也注意到了,分发机制不是那么优雅。默认状态下,RabbitMQ将第n个Message分发给第n个Consumer。当然n是取余后的。它不管Consumer是否还有unacked Message,只是按照这个默认机制进行分发。
那么如果有个Consumer工作比较重,那么就会导致有的Consumer基本没事可做,有的Consumer却是毫无休息的机会。那么,RabbitMQ是如何处理这种问题呢?
通过 basic.qos 方法设置prefetch_count=1 。这样RabbitMQ就会使得每个Consumer在同一个时间点最多处理一个Message。换句话说,在接收到该Consumer的ack前,他它不会将新的Message分发给它。 设置方法如下:
channel.basic_qos(prefetch_count=1)
注意,这种方法可能会导致queue满。当然,这种情况下你可能需要添加更多的Consumer,或者创建更多的virtualHost来细化你的设计。
6. 最终版本
new_task.py script:
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True) message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode = 2, # make message persistent
))
print " [x] Sent %r" % (message,)
connection.close()
worker.py script:
#!/usr/bin/env python
import pika
import time connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True)
print ' [*] Waiting for messages. To exit press CTRL+C' def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)
time.sleep( body.count('.') )
print " [x] Done"
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
queue='task_queue') channel.start_consuming()
RabbitMQ三----'任务分发 '的更多相关文章
- RabbitMQ(三):消息持久化策略
原文:RabbitMQ(三):消息持久化策略 一.前言 在正常的服务器运行过程中,时常会面临服务器宕机重启的情况,那么我们的消息此时会如何呢?很不幸的事情就是,我们的消息可能会消失,这肯定不是我们希望 ...
- 8、RabbitMQ三种Exchange模式(fanout,direct,topic)的性能比较
RabbitMQ三种Exchange模式(fanout,direct,topic)的性能比较 RabbitMQ中,除了Simple Queue和Work Queue之外的所有生产者提交的消息都由Exc ...
- 【转】RabbitMQ三种Exchange模式
[转]RabbitMQ三种Exchange模式 RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四 ...
- RabbitMQ (三) 工作队列之轮询分发
上一篇讲了简单队列,实际工作中,这种队列应该很少用到,因为生产者发送消息的耗时一般都很短,但是消费者收到消息后,往往伴随着对高消息的业务逻辑处理,是个耗时的过程,这势必会导致大量的消息积压在一个消费者 ...
- 快速掌握RabbitMQ(三)——消息确认、持久化、优先级的C#实现
1 消息确认 在一些场合,如转账.付费时每一条消息都必须保证成功的被处理.AMQP是金融级的消息队列协议,有很高的可靠性,这里介绍在使用RabbitMQ时怎么保证消息被成功处理的.消息确认可以分为两种 ...
- RabbitMQ三种Exchange模式(fanout,direct,topic)的特性 -摘自网络
RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四种Exchange:fanout,direct, ...
- 学习RabbitMQ(三):AMQP事务机制
本文转自:http://m.blog.csdn.net/article/details?id=54315940 在使用RabbitMQ的时候,我们可以通过消息持久化操作来解决因为服务器的异常奔溃导致的 ...
- Java使用RabbitMQ之订阅分发(Topic)
使用RabbitMQ进行消息发布和订阅,生产者将消息发送给转发器(exchange),转发器根据路由键匹配已绑定的消息队列并转发消息,主题模式支持路由键的通配. 生产者代码: package org. ...
- RabbitMQ三种Exchange模式(fanout,direct,topic)的性能比较
RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四种Exchange:fanout,direct, ...
随机推荐
- [bzoj1051][HAOI2006]受欢迎的牛——强连通分量
题目大意: 给定一个有向图,求能够被其他所有点访问到的点的个数. 题解: 首先,这个题我在洛谷上AC了,但是bzoj上WA,不知道为什么. 说一下解法. 首先,我们进行scc分解,可以知道, 如果一个 ...
- ajax+json模态框中分页(spring+struts+mybatis+easyui分页插件)
0.业务需求: 点击每个数字的时候可以显示每个对应的详细记录.也就是得点击11的时候拿着开采部与C级去查询.
- screenshoter 連續截圖工具
https://pcrookie.com/?p=993 顯示 mouse 設定 Settings -> Saving -> Display mouse cursor
- 为什么32位系统最大支持4G内存??我自己悟出来了 终于 。。。。。
今天突然开窍了,想通了..... 以下是我的抽象想法: 32位系统 这个 多少位 指的是 硬件的 一次性发送过来的位数,一个字节 等于8位,内存的一个存储单元就是一个字节,即8位. 也可以这样来想这个 ...
- Appium+python自动化6-Remote远程控制【转载】
前言 在第三篇启动app的时候有这样一行代码driver = webdriver.Remote('http://192.168.1.1:4723/wd/hub', desired_caps),很多小伙 ...
- poj 1389(离散化+计算几何)
Area of Simple Polygons Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3412 Accepted ...
- CentOS6.5升级autoconf版本,解决”Autoconf version 2.64 or higher is required“错误
CentOS6.5升级autoconf版本,解决”Autoconf version 2.64 or higher is required“错误 https://blog.csdn.net/pretty ...
- [BZOJ1455]罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 2285 Solved: 994[Submit][Status][Discuss] ...
- Python的支持工具[0] -> 环境包管理工具[1] -> Anaconda
Anaconda包管理工具 / Anaconda Package Management Tools Anaconda is the world’s most popular Python data s ...
- JQuery里面的知识
JQuery是一个javaScript库 JQuery极大的简化了javaScript编程 通过点击 "TIY" 按钮来看看它是如何运行的. 演示JQuery的hide函数,隐藏了 ...