题目大意:
  给出一个$n(n\leq 10^5)$个结点的带边权的树,$q(q\leq 10^5)$个询问,每次询问用$y$条路径覆盖整棵树且覆盖$x$至少一次,最多能覆盖的道路长度是多少?
  强制在线。

思路:
  考虑固定$x$时的情况,我们可以使用长链剖分,然后贪心地选择$2y$条长链,每$2$条可以组成一条路径,这样就找出了$y$条路径的最优方案,均摊复杂度$O(n)$。
  现在考虑$x$不固定的情况,对于每个询问分别做一次长链剖分,复杂度是$O(nq)$的,显然会超时。
  考虑如何只用一次树剖解决所有的询问。
  问题也就变成了如何确定一个根,使得所有询问的覆盖方案中,每条路径都会经过这个根。
  显然,经过一点最长的路径肯定会经过直径的一个端点。
  因此我们可以将直径的任一端点作为根结点开始树剖,然后贪心地选$2y-1$条最长链(最长的一条本身就是一条路径),这样时间复杂度就是$O(n+q)$。
  但是这样并不是完全正确的,因为$2y-1$条最长链不一定能涵盖$x$。
  因此我们需要将其中一条替换成一条经过$x$的链。
  具体分为以下三种情况:
    1.直接把最短的一整条链去掉;
    2.把从根结点出发的一条链去掉上面一半;
    3.把离$x$最近的一条链去掉下面$y$一半。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
struct Edge {
int to,w;
};
bool vis[N];
std::queue<int> q;
std::vector<Edge> e[N];
int dis[N],far[N],par[N],top[N],son[N],leaf[N],rank[N],sum[N],root;
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
inline void bfs() {
q.push(root=);
vis[]=true;
while(!q.empty()) {
const int x=q.front();
q.pop();
if(dis[x]>dis[root]) root=x;
for(register unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(vis[y]) continue;
dis[y]=dis[x]+w;
vis[y]=true;
q.push(y);
}
}
dis[root]=;
}
void dfs1(const int &x,const int &par) {
son[x]=;
::par[x]=par;
far[x]=dis[x];
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(y==par) continue;
dis[y]=dis[x]+w;
dfs1(y,x);
if(far[y]>far[x]) {
far[x]=far[y];
son[x]=y;
}
}
}
void dfs2(const int &x) {
if(x==son[par[x]]) {
top[x]=top[par[x]];
} else {
top[x]=x;
}
if(son[x]) {
dfs2(son[x]);
} else {
leaf[++leaf[]]=x;
}
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to;
if(y==par[x]||y==son[x]) continue;
dfs2(y);
}
}
inline bool cmp(const int &x,const int &y) {
return dis[x]-dis[par[top[x]]]>dis[y]-dis[par[top[y]]];
}
inline int query(const int &x,const int &y) {
if(rank[top[x]]<=y*-) {
return sum[std::min(y*-,leaf[])];
}
int u=x;
while(rank[top[u]]>y*-) {
u=par[top[u]];
}
return sum[y*-]-std::min(std::min(sum[y*-]-sum[y*-],far[u]-dis[u]),dis[u])+(far[x]-dis[u]);
}
int main() {
const int n=getint(),q=getint();
for(register int i=;i<n;i++) {
const int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
}
bfs();
dfs1(root,);
dfs2(root);
std::sort(&leaf[],&leaf[+leaf[]],cmp);
for(register int i=;i<=leaf[];i++) {
rank[top[leaf[i]]]=i;
sum[i]=sum[i-]+dis[leaf[i]]-dis[par[top[leaf[i]]]];
}
for(register int i=,ans=;i<q;i++) {
const int x=(getint()+ans-)%n+,y=(getint()+ans-)%n+;
printf("%d\n",ans=query(x,y));
}
return ;
}

[CF526G]Spiders Evil Plan的更多相关文章

  1. 【CF526G】Spiders Evil Plan(贪心)

    [CF526G]Spiders Evil Plan(贪心) 题面 洛谷 CodeForces 给定一棵树,要求选择\(y\)条链,满足被链覆盖的所有点在树上联通,且\(x\)必定在联通块中. 对于每次 ...

  2. CF Contest 526 G. Spiders Evil Plan 长链剖分维护贪心

    LINK:Spiders Evil Plan 非常巧妙的题目. 选出k条边使得这k条边的路径覆盖x且覆盖的边的边权和最大. 类似于桥那道题还是选择2k个点 覆盖x那么以x为根做长链剖分即可. 不过这样 ...

  3. Codeforces 526G Spiders Evil Plan

    由于做的时候看的是中文题面,第一遍写就被卡题意了:还以为每一条都要过x,那么就是一道动态树根选择2y个叶子的奇怪题目 交完0分gg,才发现题目看错了╮(╯▽╰)╭ the node containin ...

  4. Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...

  5. code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  6. Arpa's loud Owf and Mehrdad's evil plan

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  7. Codeforces Round #383 (Div. 2)C. Arpa's loud Owf and Mehrdad's evil plan

    C. Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 me ...

  8. Codeforces Round #383 (Div. 2) C. Arpa's loud Owf and Mehrdad's evil plan —— DFS找环

    题目链接:http://codeforces.com/contest/742/problem/C C. Arpa's loud Owf and Mehrdad's evil plan time lim ...

  9. 【codeforces 742C】Arpa's loud Owf and Mehrdad's evil plan

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. python-线程进程与队列

    线程,有时被称为轻量级进程,是程序执行流的最小单元线程是程序中一个单一的顺序控制流程.进程内一个相对独立的.可调度的执行单元,是系统独立调度和分派CPU的基本单位指进行中的程序的调度单位.在单个程序中 ...

  2. Linux认知之旅【02 装个软件玩玩】!

    〇.命令行终端熟悉了吗? 1.没有仔细研究上一篇文章? 拿上看看这几个命令:ls.cd.cp.mv.rm.mkdir.touch.cat.less.恩,暂时这些够用了! 什么?你连虚拟机也没装! 感谢 ...

  3. 【转载】Unity3D研究院之静态自动检查代码缺陷与隐患

    代码缺陷和代码错误的最大区别是,代码缺陷不影响游戏编译,而代码错误编译都不通过.但是代码缺陷会影响游戏发布后产生的一系列BUG..我今天无意间逛外国论坛发现的一个方法,使用了一下感觉挺给力的第一时间分 ...

  4. 异步fifo的设计(FPGA)

    本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据)           ...

  5. solr集群搭建(复制)

    Solr集群的搭建以及使用(内涵zookeeper集群的搭建指南) 1   什么是SolrCloud SolrCloud(solr 云)是Solr提供的分布式搜索方案,当你需要大规模,容错,分布式索引 ...

  6. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  7. position:absolute和float隐式改变display为inline-block

    不论之前是什么类型的元素(display:none除外), 只要设置了position:absolute或float, 都会让元素以display:inline-block的方式显示, 可以设置长宽, ...

  8. Extra Judicial Operation

    Description The Suitably Protected Programming Contest (SPPC) is a multi-site contest in which conte ...

  9. box-pack

    box-pack表示父容器里面子容器的水平对齐方式,可选参数如下所示: start | end | center | justify <article class="wrap" ...

  10. elemetUi 组件--el-checkbox

    [需求]实现选择右边的