重现ssd遇到的问题
首先是create_list.sh和create_data.sh中的data_dir的路径得修改.
然后是在create_data.sh文件调用$caffe_root下的scripts目录中的create_annoset.py时产生的错误:
Traceback (most recent call last):
File "/opt/xuben-project/caffe/data/VOC0712/../../scripts/create_annoset.py", line 105, in <module>
label_map = caffe_pb2.LabelMap()
AttributeError: 'module' object has no attribute 'LabelMap'
Traceback (most recent call last):
File "/opt/xuben-project/caffe/data/VOC0712/../../scripts/create_annoset.py", line 105, in <module>
label_map = caffe_pb2.LabelMap()
AttributeError: 'module' object has no attribute 'LabelMap'
原因应该是没有加入PYTHONPATH路径.
参考网址:https://github.com/manutdzou/KITTI_SSD/issues/5
参考这个网址加入PYTHONPATH:https://blog.csdn.net/jasonzzj/article/details/53941147
这里我选择的是在~/.bashrc文件中加入PYTHONPATH,由于我的计算机中还有其他目录中含有caffe工程,所以下次我用别的caffe目录,可能需要修改PYTHONPATH的路径.
接下来就是正常处理.日志如下
/opt/xuben-project/caffe/build/tools/convert_annoset --anno_type=detection --label_type=xml --label_map_file=/opt/xuben-project/caffe/data/VOC0712/../../data/VOC0712/labelmap_voc.prototxt --check_label=True --min_dim=0 --max_dim=0 --resize_height=0 --resize_width=0 --backend=lmdb --shuffle=False --check_size=False --encode_type=jpg --encoded=True --gray=False /opt/xuben-data/VOCdevkit/ /opt/xuben-project/caffe/data/VOC0712/../../data/VOC0712/test.txt /opt/xuben-data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
I0422 17:20:58.777124 25860 convert_annoset.cpp:122] A total of 4952 images.
I0422 17:20:58.777395 25860 db_lmdb.cpp:35] Opened lmdb /opt/xuben-data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
I0422 17:21:03.382318 25860 convert_annoset.cpp:195] Processed 1000 files.
I0422 17:21:07.988387 25860 convert_annoset.cpp:195] Processed 2000 files.
I0422 17:21:12.813705 25860 convert_annoset.cpp:195] Processed 3000 files.
I0422 17:21:17.298377 25860 convert_annoset.cpp:195] Processed 4000 files.
I0422 17:21:22.664110 25860 convert_annoset.cpp:201] Processed 4952 files.
link_dir:examples/VOC0712/VOC0712_test_lmdb
/opt/xuben-project/caffe/build/tools/convert_annoset --anno_type=detection --label_type=xml --label_map_file=/opt/xuben-project/caffe/data/VOC0712/../../data/VOC0712/labelmap_voc.prototxt --check_label=True --min_dim=0 --max_dim=0 --resize_height=0 --resize_width=0 --backend=lmdb --shuffle=False --check_size=False --encode_type=jpg --encoded=True --gray=False /opt/xuben-data/VOCdevkit/ /opt/xuben-project/caffe/data/VOC0712/../../data/VOC0712/trainval.txt /opt/xuben-data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
I0422 17:21:23.231978 25883 convert_annoset.cpp:122] A total of 16551 images.
I0422 17:21:23.232414 25883 db_lmdb.cpp:35] Opened lmdb /opt/xuben-data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
I0422 17:21:58.782371 25883 convert_annoset.cpp:195] Processed 1000 files.
I0422 17:22:39.531497 25883 convert_annoset.cpp:195] Processed 2000 files.
I0422 17:23:21.844856 25883 convert_annoset.cpp:195] Processed 3000 files.
I0422 17:24:00.439805 25883 convert_annoset.cpp:195] Processed 4000 files.
I0422 17:24:36.319861 25883 convert_annoset.cpp:195] Processed 5000 files.
I0422 17:25:12.599020 25883 convert_annoset.cpp:195] Processed 6000 files.
I0422 17:25:52.925842 25883 convert_annoset.cpp:195] Processed 7000 files.
I0422 17:26:35.024026 25883 convert_annoset.cpp:195] Processed 8000 files.
I0422 17:27:20.739751 25883 convert_annoset.cpp:195] Processed 9000 files.
I0422 17:28:06.118722 25883 convert_annoset.cpp:195] Processed 10000 files.
I0422 17:28:45.578575 25883 convert_annoset.cpp:195] Processed 11000 files.
I0422 17:29:17.399873 25883 convert_annoset.cpp:195] Processed 12000 files.
I0422 17:29:56.108283 25883 convert_annoset.cpp:195] Processed 13000 files.
I0422 17:30:34.113029 25883 convert_annoset.cpp:195] Processed 14000 files.
I0422 17:31:14.184615 25883 convert_annoset.cpp:195] Processed 15000 files.
I0422 17:31:54.871651 25883 convert_annoset.cpp:195] Processed 16000 files.
I0422 17:32:17.246522 25883 convert_annoset.cpp:201] Processed 16551 files.
link_dir:examples/VOC0712/VOC0712_trainval_lmdb
这样就顺利完成了Preparation阶段.
2.在Train/Eval阶段,第一步报错:
F0422 20:59:11.852633 4724 syncedmem.cpp:56] Check failed: error == cudaSuccess (2 vs. 0) out of memory
*** Check failure stack trace: ***
@ 0x7f1c0a97f5cd google::LogMessage::Fail()
@ 0x7f1c0a981433 google::LogMessage::SendToLog()
@ 0x7f1c0a97f15b google::LogMessage::Flush()
@ 0x7f1c0a981e1e google::LogMessageFatal::~LogMessageFatal()
@ 0x7f1c0b0e52c0 caffe::SyncedMemory::to_gpu()
@ 0x7f1c0b0e4289 caffe::SyncedMemory::mutable_gpu_data()
@ 0x7f1c0b278f12 caffe::Blob<>::mutable_gpu_data()
@ 0x7f1c0b2e3b18 caffe::CuDNNConvolutionLayer<>::Forward_gpu()
@ 0x7f1c0b0a91b2 caffe::Net<>::ForwardFromTo()
@ 0x7f1c0b0a92d7 caffe::Net<>::Forward()
@ 0x7f1c0b28f960 caffe::Solver<>::Step()
@ 0x7f1c0b2903ee caffe::Solver<>::Solve()
@ 0x40b9c4 train()
@ 0x407590 main
@ 0x7f1c098ef830 __libc_start_main
@ 0x407db9 _start
@ (nil) (unknown)
Aborted (core dumped)
这个可能是由于GPU显存小而产生的报错.
参考网址:https://github.com/BVLC/caffe/issues/5353
在ssd_pascal.py这个训练文件中,修改这两个变量后可以顺利训练.
batch_size = 8
accum_batch_size = 16
重现ssd遇到的问题的更多相关文章
- 故障重现(内存篇2),JAVA内存不足导致频繁回收和swap引起的性能问题
背景起因: 记起以前的另一次也是关于内存的调优分享下 有个系统平时运行非常稳定运行(没经历过大并发考验),然而在一次活动后,人数并发一上来后,系统开始卡. 我按经验开始调优,在每个关键步骤的加入如 ...
- 故障重现, JAVA进程内存不够时突然挂掉模拟
背景,服务器上的一个JAVA服务进程突然挂掉,查看产生了崩溃日志,如下: # Set larger code cache with -XX:ReservedCodeCacheSize= # This ...
- SSD框架训练自己的数据集
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...
- 光驱SSD安装Win7+ubuntu系统双系统
准备条件: U盘,32GB,三星品牌 SSD,120GB,三星品牌 win7旗舰版,Ghost系统(安装简单嘛),Ylmf_Ghost_Win7_SP1_x64_2016_1011.iso ubunt ...
- 创建Azure DS 虚拟机并附加SSD硬盘
$subscriptionName = "Windows Azure Enterprise Trial" #订阅名称 $location = "China East&qu ...
- 关闭电脑SSD的磁盘碎片整理
小白往往会把机械硬盘时代的习惯带进固态硬盘时代,比如碎片整理.机械硬盘时代砖家最喜欢告诉小白:“系统慢了吧?赶紧碎片整理撒.”小白屁颠屁颠地整理去了.殊不知碎片整理对于SSD来说完全就是种折磨.这种“ ...
- SQL Server 2014新特性探秘(2)-SSD Buffer Pool Extension
简介 SQL Server 2014中另一个非常好的功能是,可以将SSD虚拟成内存的一部分,来供SQL Server数据页缓冲区使用.通过使用SSD来扩展Buffer-Pool,可以使得大量随 ...
- Macbook SSD硬盘空间不够用了?来个Xcode大瘦身吧!
原文转自:http://www.jianshu.com/p/03fed9a5fc63 日期:2016-04-22 最近突然发现我的128G SSD硬盘只剩下可怜的8G多,剩下这么少的一点空间连X ...
- 2016ACM/ICPC亚洲区沈阳站-重现赛赛题
今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...
随机推荐
- CUDA三维数组
http://hpcbbs.it168.com/forum.php?mod=viewthread&tid=1643 根据上面链接的帖子研究了下三维数组,就像他自己说的一样是有问题的,我自己修改 ...
- 统计函数运行时间-CPU端
C/C++中的计时函数是clock(),而与其相关的数据类型是clock_t.在MSDN中,查得对clock函数定义如下: clock_t clock( void ); 这个函数返回从“开启这个程序 ...
- 【javascript】ajax 基础
什么是 ajax ajax 即“Asynchronous JavaScript and XML”(异步 JavaScript 和 XML),也就是无刷新数据读取. http 请求 首先需要了解 htt ...
- 面试-Spring理解
转自http://hui.sohu.com/infonews/article/6331404387079946240 spring呢,是pivotal公司维护的一系列开源工具的总称,最为人所知的是sp ...
- iOS面试题总结(持续更新)
过段时间打算跳槽,找了一些面试题来做,在这里做个总结方便review,希望能对要面试的童鞋有帮助. 以下为面试题: 运行以下代码会有什么结果 NSString *str1 = @"str1& ...
- ref是什么?
ref是组件的特殊属性,组件被渲染后,指向组件的一个引用.可以通过组件的ref属性,来获取真实的组件. 因为,组件并不是真正的DOM节点,而是存在于内存中的一种数据结构,称为虚拟的DOM,只有当它真正 ...
- 【学时总结】 ◆学时·IV◆ 数位DP
[学时·IV] 数位DP ■基本策略■ 说白了就是超时和不超时的区别 :) 有一些特别的题与数位有关,但是用一般的枚举算法会超时.这时候就有人提出了--我们可以用动态规划!通过数字前一位和后一位之间的 ...
- TCP_Wrappers & PAM & Nsswitch服务
cpwrapper:工作在第四层(传输层),能够对有状态连接的服务进行安全检测并实现访问控制的工具.部分功能上跟iptables重叠. 对于进出本主机访问某特定服务的连接基于规则进行检查的一个访问控制 ...
- Ubuntu16.04下配置ssh免密登录
Ubuntu16.04下配置ssh免密登录 环境准备:新建两台虚拟机,而且两台虚拟机上都装有Ubuntu16.04的系统,使两台虚拟机之间保持互通状态.分别为两台虚拟机命名为A,B.假设我们要使A虚拟 ...
- 文档-linux io模式及select,poll,epoll
文档-Linux IO模式详解 1. 概念说明 在进行解释之前,首先要说明几个概念:- 用户空间和内核空间- 进程切换- 进程的阻塞- 文件描述符- 缓存 I/O 1.1 用户空间与内核空间 现在操作 ...